Suppr超能文献

基于不确定性的稀疏非均匀图的肿瘤同时分割和配准。

Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.

机构信息

Biomedical Image Analysis Group, Department of Computing, Imperial College London, UK.

Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, MA, USA.

出版信息

Med Image Anal. 2014 May;18(4):647-59. doi: 10.1016/j.media.2014.02.006. Epub 2014 Feb 24.

Abstract

In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model.

摘要

在本文中,我们提出了一种基于图的并发脑肿瘤分割和图谱到病变患者配准框架。分割和配准问题都使用图像域上叠加的稀疏网格上的统一对离散马尔可夫随机场模型进行建模。分割是基于模式分类技术解决的,而配准是通过最大化体积之间的相似性来完成的,并且相对于匹配标准是模块化的。通过在肿瘤区域中放松配准项来耦合这两个问题,这对应于分类得分高和体积之间差异大的区域。为了克服离散方法在适当抽样解决方案空间和重要内存需求方面的主要缺点,考虑了基于局部分割和注册不确定性的离散位移集和稀疏网格的内容驱动抽样,这些不确定性是通过最小边际能量恢复的。在一个大规模的低级别胶质瘤数据库上的最新结果证明了我们方法的潜力,而我们提出的方法则表现出了保持性能和大大降低模型复杂度的特点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8643/4068266/5a6b55917e45/nihms570352f1.jpg

相似文献

2
Joint tumor segmentation and dense deformable registration of brain MR images.脑磁共振图像的关节肿瘤分割与密集可变形配准
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):651-8. doi: 10.1007/978-3-642-33418-4_80.

引用本文的文献

5
Coupling brain-tumor biophysical models and diffeomorphic image registration.耦合脑肿瘤生物物理模型与微分同胚图像配准
Comput Methods Appl Mech Eng. 2019 Apr 15;347:533-567. doi: 10.1016/j.cma.2018.12.008. Epub 2019 Jan 7.
7
Modeling 4D Pathological Changes by Leveraging Normative Models.利用规范模型对4D病理变化进行建模。
Comput Vis Image Underst. 2016 Oct;151:3-13. doi: 10.1016/j.cviu.2016.01.007.
9
Combining generative models for multifocal glioma segmentation and registration.用于多灶性胶质瘤分割与配准的生成模型融合
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):763-70. doi: 10.1007/978-3-319-10404-1_95.

本文引用的文献

1
Deformable medical image registration: a survey.可变形医学图像配准:综述。
IEEE Trans Med Imaging. 2013 Jul;32(7):1153-90. doi: 10.1109/TMI.2013.2265603. Epub 2013 May 31.
3
Registration using sparse free-form deformations.使用稀疏自由形式变形进行配准。
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):659-66. doi: 10.1007/978-3-642-33418-4_81.
4
Joint tumor segmentation and dense deformable registration of brain MR images.脑磁共振图像的关节肿瘤分割与密集可变形配准
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):651-8. doi: 10.1007/978-3-642-33418-4_80.
8
Graph based spatial position mapping of low-grade gliomas.基于图形的低级别胶质瘤空间位置映射
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):508-15. doi: 10.1007/978-3-642-23629-7_62.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验