Suppr超能文献

切片到体积的可变形配准:平面选择与平面内变形之间高效的一次性共识

Slice-to-volume deformable registration: efficient one-shot consensus between plane selection and in-plane deformation.

作者信息

Ferrante Enzo, Fecamp Vivien, Paragios Nikos

机构信息

Center for Visual Computing (CVN), CentraleSupelec - Galen Team, INRIA, 92295, Chatenay-Malabry, France,

出版信息

Int J Comput Assist Radiol Surg. 2015 Jun;10(6):791-800. doi: 10.1007/s11548-015-1205-2. Epub 2015 Apr 23.

Abstract

PURPOSE

This paper introduces a novel decomposed graphical model to deal with slice-to-volume registration in the context of medical images and image-guided surgeries.

METHODS

We present a new non-rigid slice-to-volume registration method whose main contribution is the ability to decouple the plane selection and the in-plane deformation parts of the transformation--through two distinct graphs--toward reducing the complexity of the model while being able to obtain simultaneously the solution for both of them. To this end, the plane selection process is expressed as a local graph-labeling problem endowed with planarity satisfaction constraints, which is then directly linked with the deformable part through the data registration likelihoods. The resulting model is modular with respect to the image metric, can cope with arbitrary in-plane regularization terms and inherits excellent properties in terms of computational efficiency.

RESULTS

The proof of concept for the proposed formulation is done using cardiac MR sequences of a beating heart (an artificially generated 2D temporal sequence is extracted using real data with known ground truth) as well as multimodal brain images involving ultrasound and computed tomography images. We achieve state-of-the-art results while decreasing the computational time when we compare with another method based on similar techniques.

CONCLUSIONS

We confirm that graphical models and discrete optimization techniques are suitable to solve non-rigid slice-to-volume registration problems. Moreover, we show that decoupling the graphical model and labeling it using two lower-dimensional label spaces, we can achieve state-of-the-art results while substantially reducing the complexity of our method and moving the approach close to real clinical applications once considered in the context of modern parallel architectures.

摘要

目的

本文介绍一种新颖的分解图形模型,用于处理医学图像和图像引导手术中的切片到体积配准。

方法

我们提出了一种新的非刚性切片到体积配准方法,其主要贡献在于能够通过两个不同的图形将变换的平面选择和平面内变形部分解耦,以降低模型的复杂性,同时能够同时获得两者的解决方案。为此,平面选择过程被表示为一个带有平面性满足约束的局部图形标记问题,然后通过数据配准似然性与可变形部分直接联系起来。所得模型在图像度量方面是模块化的,可以处理任意的平面内正则化项,并且在计算效率方面继承了优异的特性。

结果

使用跳动心脏的心脏磁共振序列(使用具有已知地面真值的真实数据提取人工生成的二维时间序列)以及涉及超声和计算机断层扫描图像的多模态脑图像对所提出的公式进行了概念验证。与基于类似技术的另一种方法相比,我们在降低计算时间的同时取得了领先的结果。

结论

我们证实图形模型和离散优化技术适用于解决非刚性切片到体积配准问题。此外,我们表明,通过解耦图形模型并使用两个低维标签空间对其进行标记,我们可以在大幅降低方法复杂性的同时取得领先的结果,并且一旦在现代并行架构的背景下考虑,该方法就更接近实际临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验