Suppr超能文献

利用 ADNI 数据库对阿尔茨海默病患者的结构 MRI 进行自动分类:十种方法的比较。

Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database.

机构信息

UPMC Université Paris 6, UMR 7225, UMR_S 975, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière (CRICM), Paris, France.

出版信息

Neuroimage. 2011 May 15;56(2):766-81. doi: 10.1016/j.neuroimage.2010.06.013. Epub 2010 Jun 11.

Abstract

Recently, several high dimensional classification methods have been proposed to automatically discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls (CN) based on T1-weighted MRI. However, these methods were assessed on different populations, making it difficult to compare their performance. In this paper, we evaluated the performance of ten approaches (five voxel-based methods, three methods based on cortical thickness and two methods based on the hippocampus) using 509 subjects from the ADNI database. Three classification experiments were performed: CN vs AD, CN vs MCIc (MCI who had converted to AD within 18 months, MCI converters - MCIc) and MCIc vs MCInc (MCI who had not converted to AD within 18 months, MCI non-converters - MCInc). Data from 81 CN, 67 MCInc, 39 MCIc and 69 AD were used for training and hyperparameters optimization. The remaining independent samples of 81 CN, 67 MCInc, 37 MCIc and 68 AD were used to obtain an unbiased estimate of the performance of the methods. For AD vs CN, whole-brain methods (voxel-based or cortical thickness-based) achieved high accuracies (up to 81% sensitivity and 95% specificity). For the detection of prodromal AD (CN vs MCIc), the sensitivity was substantially lower. For the prediction of conversion, no classifier obtained significantly better results than chance. We also compared the results obtained using the DARTEL registration to that using SPM5 unified segmentation. DARTEL significantly improved six out of 20 classification experiments and led to lower results in only two cases. Overall, the use of feature selection did not improve the performance but substantially increased the computation times.

摘要

最近,已经提出了几种高维分类方法,以便基于 T1 加权 MRI 自动区分阿尔茨海默病 (AD) 或轻度认知障碍 (MCI) 患者与老年对照组 (CN)。然而,这些方法是在不同的人群中评估的,因此很难比较它们的性能。在本文中,我们使用 ADNI 数据库中的 509 名受试者评估了十种方法 (五种基于体素的方法、三种基于皮质厚度的方法和两种基于海马体的方法) 的性能。进行了三个分类实验:CN 与 AD、CN 与 MCIc (在 18 个月内转化为 AD 的 MCI,MCI 转化者 - MCIc) 和 MCIc 与 MCInc (在 18 个月内未转化为 AD 的 MCI,MCI 非转化者 - MCInc)。使用 81 名 CN、67 名 MCInc、39 名 MCIc 和 69 名 AD 的数据进行训练和超参数优化。其余 81 名 CN、67 名 MCInc、37 名 MCIc 和 68 名 AD 的独立样本用于获得方法性能的无偏估计。对于 AD 与 CN,全脑方法 (基于体素或基于皮质厚度) 达到了很高的准确率 (高达 81%的敏感性和 95%的特异性)。对于前驱性 AD 的检测 (CN 与 MCIc),敏感性要低得多。对于转换的预测,没有分类器比机会获得显著更好的结果。我们还比较了使用 DARTEL 注册和 SPM5 统一分割获得的结果。DARTEL 显著改善了 20 个分类实验中的 6 个,并且仅在两种情况下导致结果较低。总体而言,使用特征选择并没有提高性能,但大大增加了计算时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验