Suppr超能文献

通过将临床研究与一项大型(N>37000)基于人群的研究相结合,构建基于多模态神经影像学的轻度认知障碍风险评分。

Towards a multimodal neuroimaging-based risk score for mild cognitive impairment by combining clinical studies with a large (N>37000) population-based study.

作者信息

Zendehrouh Elaheh, Sendi Mohammad S E, Abrol Anees, Batta Ishaan, Hassanzadeh Reihaneh, Calhoun Vince D

机构信息

Tri-institutional Center for Translational Research in Neuroimaging and Data Science: Georgia State University, Georgia Institute of Technology, Emory University Atlanta, GA.

Department of Electrical and Computer Engineering at Georgia Institute of Technology, Atlanta, GA.

出版信息

medRxiv. 2024 Mar 14:2024.03.12.24303873. doi: 10.1101/2024.03.12.24303873.

Abstract

Alzheimer's disease (AD) is the most common form of age-related dementia, leading to a decline in memory, reasoning, and social skills. While numerous studies have investigated the genetic risk factors associated with AD, less attention has been given to identifying a brain imaging-based measure of AD risk. This study introduces a novel approach to assess mild cognitive impairment MCI, as a stage before AD, risk using neuroimaging data, referred to as a brain-wide risk score (BRS), which incorporates multimodal brain imaging. To begin, we first categorized participants from the Open Access Series of Imaging Studies (OASIS)-3 cohort into two groups: controls (CN) and individuals with MCI. Next, we computed structure and functional imaging features from all the OASIS data as well as all the UK Biobank data. For resting functional magnetic resonance imaging (fMRI) data, we computed functional network connectivity (FNC) matrices using fully automated spatially constrained independent component analysis. For structural MRI data we computed gray matter (GM) segmentation maps. We then evaluated the similarity between each participant's neuroimaging features from the UK Biobank and the difference in the average of those features between CN individuals and those with MCI, which we refer to as the brain-wide risk score (BRS). Both GM and FNC features were utilized in determining the BRS. We first evaluated the differences in the distribution of the BRS for CN vs MCI within the OASIS-3 (using OASIS-3 as the reference group). Next, we evaluated the BRS in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (using OASIS-3 as the reference group), showing that the BRS can differentiate MCI from CN in an independent data set. Subsequently, using the sMRI BRS, we identified 10 distinct subgroups and similarly, we identified another set of 10 subgroups using the FNC BRS. For sMRI and FNC we observed results that mutually validate each other, with certain aspects being complementary. For the unimodal analysis, sMRI provides greater differentiation between MCI and CN individuals than the fMRI data, consistent with prior work. Additionally, by utilizing a multimodal BRS approach, which combines both GM and FNC assessments, we identified two groups of subjects using the multimodal BRS scores. One group exhibits high MCI risk with both negative GM and FNC BRS, while the other shows low MCI risk with both positive GM and FNC BRS. Moreover, in the UKBB we have 46 participants diagnosed with AD showed FNC and GM patterns similar to those in high-risk groups, defined in both unimodal and multimodal BRS. Finally, to ensure the reproducibility of our findings, we conducted a validation analysis using the ADNI as an additional reference dataset and repeated the above analysis. The results were consistently replicated across different reference groups, highlighting the potential of FNC and sMRI-based BRS in early Alzheimer's detection.

摘要

阿尔茨海默病(AD)是与年龄相关的痴呆最常见的形式,会导致记忆力、推理能力和社交技能下降。虽然众多研究已经调查了与AD相关的遗传风险因素,但对于确定基于脑成像的AD风险指标的关注较少。本研究引入了一种新方法,使用神经影像数据评估轻度认知障碍(MCI)作为AD之前阶段的风险,该方法称为全脑风险评分(BRS),它整合了多模态脑成像。首先,我们将来自开放获取影像研究系列(OASIS)-3队列的参与者分为两组:对照组(CN)和MCI个体。接下来,我们从所有OASIS数据以及所有英国生物银行数据中计算结构和功能成像特征。对于静息功能磁共振成像(fMRI)数据,我们使用完全自动化的空间受限独立成分分析计算功能网络连接(FNC)矩阵。对于结构MRI数据,我们计算灰质(GM)分割图。然后,我们评估了每个参与者来自英国生物银行的神经影像特征与CN个体和MCI个体之间这些特征平均值差异之间的相似性,我们将其称为全脑风险评分(BRS)。GM和FNC特征都用于确定BRS。我们首先评估了OASIS-3内CN与MCI的BRS分布差异(使用OASIS-3作为参考组)。接下来,我们在阿尔茨海默病神经影像倡议(ADNI)队列中评估了BRS(使用OASIS-3作为参考组),表明BRS可以在独立数据集中区分MCI和CN。随后,使用结构MRI的BRS,我们确定了10个不同的亚组,同样,我们使用FNC的BRS确定了另一组10个亚组。对于结构MRI和FNC,我们观察到相互验证的结果,某些方面是互补的。对于单模态分析,结构MRI在区分MCI和CN个体方面比fMRI数据提供了更大的差异,这与先前的工作一致。此外,通过利用结合GM和FNC评估的多模态BRS方法,我们使用多模态BRS分数确定了两组受试者。一组表现出高MCI风险,GM和FNC的BRS均为负,而另一组表现出低MCI风险,GM和FNC的BRS均为正。此外,在英国生物银行中,我们有46名被诊断为AD的参与者,其FNC和GM模式与单模态和多模态BRS中定义的高风险组相似。最后,为确保我们研究结果的可重复性,我们使用ADNI作为额外的参考数据集进行了验证分析,并重复了上述分析。结果在不同参考组中得到了一致的重复,突出了基于FNC和结构MRI的BRS在早期阿尔茨海默病检测中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/068a/10980138/61b002d06d72/nihpp-2024.03.12.24303873v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验