Suppr超能文献

FED-UNet++:一种用于阿尔茨海默病诊断中海马体分割的改进型嵌套UNet

FED-UNet++: An Improved Nested UNet for Hippocampus Segmentation in Alzheimer's Disease Diagnosis.

作者信息

Yang Liping, Zhang Wei, Wang Shengyu, Yu Xiaoru, Jing Bin, Sun Nairui, Sun Tengchao, Wang Wei

机构信息

College of Computer Science and Technology, Changchun University, No. 6543, Satellite Road, Changchun 130022, China.

出版信息

Sensors (Basel). 2025 Aug 19;25(16):5155. doi: 10.3390/s25165155.

Abstract

The hippocampus is a key structure involved in the early pathological progression of Alzheimer's disease. Accurate segmentation of this region is vital for the quantitative assessment of brain atrophy and the support of diagnostic decision-making. To address limitations in current MRI-based hippocampus segmentation methods-such as indistinct boundaries, small target size, and limited feature representation-this study proposes an enhanced segmentation framework called FED-UNet++. The residual feature reconstruction block (FRBlock) is introduced to strengthen the network's ability to capture boundary cues and fine-grained structural details in shallow layers. The efficient attention pyramid (EAP) module enhances the integration of multi-scale features and spatial contextual information. The dynamic frequency context network (DFCN) mitigates the decoder's limitations in capturing long-range dependencies and global semantic structures. Experimental results on the benchmark dataset demonstrate that FED-UNet++ achieves superior performance across multiple evaluation metrics, with an IoU of 74.95% and a Dice coefficient of 84.43% ± 0.21%, outperforming the baseline model in both accuracy and robustness. These findings confirm that FED-UNet++ is highly effective in segmenting small and intricate brain structures like the hippocampus, providing a robust and practical tool for MRI-based analysis of neurodegenerative diseases.

摘要

海马体是参与阿尔茨海默病早期病理进展的关键结构。准确分割该区域对于脑萎缩的定量评估和诊断决策的支持至关重要。为了解决当前基于MRI的海马体分割方法的局限性,如边界不清晰、目标尺寸小和特征表示有限,本研究提出了一种名为FED-UNet++的增强分割框架。引入了残差特征重建块(FRBlock)以增强网络在浅层捕获边界线索和细粒度结构细节的能力。高效注意力金字塔(EAP)模块增强了多尺度特征和空间上下文信息的整合。动态频率上下文网络(DFCN)减轻了解码器在捕获长程依赖和全局语义结构方面的局限性。在基准数据集上的实验结果表明,FED-UNet++在多个评估指标上取得了优异的性能,交并比为74.95%,Dice系数为84.43%±0.21%,在准确性和鲁棒性方面均优于基线模型。这些发现证实,FED-UNet++在分割海马体等小而复杂的脑结构方面非常有效,为基于MRI的神经退行性疾病分析提供了一个强大而实用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1755/12390371/a7465a4dc67a/sensors-25-05155-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验