Suppr超能文献

病理学成像信息学用于全切片图像的定量分析。

Pathology imaging informatics for quantitative analysis of whole-slide images.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19.

Abstract

OBJECTIVES

With the objective of bringing clinical decision support systems to reality, this article reviews histopathological whole-slide imaging informatics methods, associated challenges, and future research opportunities.

TARGET AUDIENCE

This review targets pathologists and informaticians who have a limited understanding of the key aspects of whole-slide image (WSI) analysis and/or a limited knowledge of state-of-the-art technologies and analysis methods.

SCOPE

First, we discuss the importance of imaging informatics in pathology and highlight the challenges posed by histopathological WSI. Next, we provide a thorough review of current methods for: quality control of histopathological images; feature extraction that captures image properties at the pixel, object, and semantic levels; predictive modeling that utilizes image features for diagnostic or prognostic applications; and data and information visualization that explores WSI for de novo discovery. In addition, we highlight future research directions and discuss the impact of large public repositories of histopathological data, such as the Cancer Genome Atlas, on the field of pathology informatics. Following the review, we present a case study to illustrate a clinical decision support system that begins with quality control and ends with predictive modeling for several cancer endpoints. Currently, state-of-the-art software tools only provide limited image processing capabilities instead of complete data analysis for clinical decision-making. We aim to inspire researchers to conduct more research in pathology imaging informatics so that clinical decision support can become a reality.

摘要

目的

为了将临床决策支持系统变为现实,本文回顾了组织病理学全切片成像信息学方法、相关挑战以及未来的研究机会。

目标受众

本综述面向对全切片图像(WSI)分析的关键方面了解有限、对最新技术和分析方法了解有限的病理学家和信息学家。

范围

首先,我们讨论了影像学信息学在病理学中的重要性,并强调了组织病理学 WSI 带来的挑战。接下来,我们全面回顾了当前用于以下方面的方法:组织病理学图像的质量控制;在像素、对象和语义级别上捕获图像属性的特征提取;利用图像特征进行诊断或预后应用的预测建模;以及用于探索 WSI 以实现新发现的数据和信息可视化。此外,我们强调了未来的研究方向,并讨论了大型组织病理学数据公共存储库(如癌症基因组图谱)对病理学信息学领域的影响。在综述之后,我们展示了一个案例研究,说明了一个从质量控制开始、最终用于多个癌症终点的预测建模的临床决策支持系统。目前,最先进的软件工具仅提供有限的图像处理功能,而不是用于临床决策的完整数据分析。我们旨在鼓励研究人员在病理学成像信息学方面开展更多研究,以使临床决策支持成为现实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2a9/3822114/14ae378b2ba7/amiajnl-2012-001540f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验