Barclay J K, Hansel M
School of Human Biology, University of Guelph, Ont., Canada.
Can J Physiol Pharmacol. 1991 Feb;69(2):279-84. doi: 10.1139/y91-043.
We used mouse soleus in vitro (n = 30) and canine gastrocnemius-plantaris preparations (n = 20) pump-perfused at the animal's blood pressure to establish if free radicals contribute to fatigue in oxidative skeletal muscle. The soleus from each leg contracted for 200 ms (70 Hz) once every minute for 60 min in Hepes buffer gassed with 100% oxygen at 27 degrees C. When contracting in Hepes alone, both muscles fatigued at 0.9 mN/mm2.min over the 60 min. The addition of purines to the bath increased the rate to 1.4 mN/mm2.min and the addition of xanthine oxidase to generate free radicals increased the rate again to 1.9 mN/mm2.min. Thus free radicals appeared to attenuate oxidative skeletal muscle function. Each canine muscle contracted isometrically at 4 Hz for 30 min and then rested for 45 min before contracting for a second 30 min at 4 Hz. In each experiment, we infused saline at 0.76 mL/min into resting muscle and at 1.91 mL/min during the first contraction period. During the remainder of the experiment, we infused, at the same rates, saline (n = 4), 10 microM dimethyl sulfoxide (DMSO) (n = 4) to identify the effect of scavenging hydroxyl radicals, 1 mM allopurinol to establish the effect of blocking xanthine oxidase (n = 4), or 200 microM desferoxamine to determine the effect of chelating iron (n = 4). With saline, the fatigue rate over the 30 min of contractions increased from 5.0 +/- 0.2 to 6.3 +/- 0.5 N/kg.min from the first to the second stimulation period. The fatigue rate was slower in the second period with each of the three experimental substances (DMSO, 5.9 +/- 0.8 to 3.2 +/- 0.3; allopurinol, 7.3 +/- 1.1 to 4.6 +/- 0.6; desferoxamine, 6.8 +/- 0.8 to 4.4 +/- 0.8 N/kg.min). The fatigue rate was the same as control when DMSO was infused only during the second contraction period. Therefore, free radicals appeared to contribute to fatigue in oxidative skeletal muscle.
我们使用体外培养的小鼠比目鱼肌(n = 30)和犬的腓肠肌-跖肌标本(n = 20),在动物血压下进行泵灌注,以确定自由基是否会导致氧化型骨骼肌疲劳。每只腿的比目鱼肌在27℃、用100%氧气通气的Hepes缓冲液中,以70Hz的频率每分钟收缩一次,每次收缩200毫秒,持续60分钟。当仅在Hepes中收缩时,两种肌肉在60分钟内的疲劳速率均为0.9毫牛顿/平方毫米·分钟。向浴槽中添加嘌呤可将速率提高到1.4毫牛顿/平方毫米·分钟,添加黄嘌呤氧化酶以产生自由基可再次将速率提高到1.9毫牛顿/平方毫米·分钟。因此,自由基似乎会削弱氧化型骨骼肌的功能。每条犬的肌肉以4Hz的频率等长收缩30分钟,然后休息45分钟,之后再以4Hz的频率进行第二次30分钟的收缩。在每个实验中,我们在静息肌肉中以0.76毫升/分钟的速度输注生理盐水,在第一次收缩期以1.91毫升/分钟的速度输注。在实验的其余时间里,我们以相同的速度分别输注生理盐水(n = 4)、10微摩尔/升的二甲基亚砜(DMSO)(n = 4)以确定清除羟自由基的效果、1毫摩尔/升的别嘌呤醇以确定阻断黄嘌呤氧化酶的效果(n = 4)或200微摩尔/升的去铁胺以确定螯合铁的效果(n = 4)。输注生理盐水时,从第一次刺激期到第二次刺激期,30分钟收缩期内的疲劳速率从5.0±0.2增加到6.3±0.5牛顿/千克·分钟。使用三种实验物质(DMSO、5.9±0.8至3.2±0.3;别嘌呤醇、7.3±1.1至4.6±0.6;去铁胺、6.8±0.8至4.4±0.8牛顿/千克·分钟)中的任何一种时,第二次刺激期的疲劳速率都较慢。当仅在第二次收缩期输注DMSO时,疲劳速率与对照组相同。因此,自由基似乎会导致氧化型骨骼肌疲劳。