MacNab Ying C
School of Population and Public Health, University of British Columbia, Vancouver, Canada.
Spat Stat. 2023 Mar;53:100726. doi: 10.1016/j.spasta.2023.100726. Epub 2023 Jan 21.
Recent disease mapping literature presents adaptively parameterized spatiotemporal (ST) autoregressive (AR) or conditional autoregressive (CAR) models for Bayesian prediction of COVID-19 infection risks. These models were motivated to capture complex spatiotemporal dynamics and heterogeneities of infection risks. In the present paper, we synthesize, generalize, and unify the ST AR and CAR model constructions for models augmented by adaptive Gaussian Markov random fields, with an emphasis on disease forecasting. A general convolution construction is presented, with illustrative models motivated to (i) characterize local risk dependencies and influences over both spatial and temporal dimensions, (ii) model risk heterogeneities and discontinuities, and (iii) predict and forecast areal-level disease risks and occurrences. The broadened constructions allow rich options of intuitive parameterization for disease mapping and spatial regression. Illustrative parameterizations are presented for Bayesian hierarchical models of Poisson, zero-inflated Poisson, and Bernoulli data models, respectively. They are also discussed in the context of quantifying time-varying or time-invariant effects of (omitted) covariates, with application to prediction and forecasting areal-level COVID-19 infection occurrences and probabilities of zero-infection. The model constructions presented herein have much wider scope in offering a flexible framework for modelling complex spatiotemporal data and for estimation, learning, and forecasting purposes.
近期的疾病地图绘制文献提出了自适应参数化的时空(ST)自回归(AR)或条件自回归(CAR)模型,用于对新冠病毒感染风险进行贝叶斯预测。这些模型旨在捕捉感染风险的复杂时空动态和异质性。在本文中,我们对由自适应高斯马尔可夫随机场增强的模型的ST AR和CAR模型构建进行了综合、概括和统一,重点是疾病预测。我们提出了一种通用的卷积构建方法,并给出了一些示例模型,这些模型旨在:(i)刻画局部风险在空间和时间维度上的依赖性和影响;(ii)对风险异质性和不连续性进行建模;(iii)预测区域层面的疾病风险和发病情况。这种扩展后的构建方法为疾病地图绘制和空间回归提供了丰富的直观参数化选项。我们分别针对泊松、零膨胀泊松和伯努利数据模型的贝叶斯分层模型给出了示例参数化方法。我们还在量化(遗漏)协变量的时变或时不变效应的背景下对这些方法进行了讨论,并将其应用于预测和预报区域层面的新冠病毒感染发病情况以及零感染概率。本文提出的模型构建方法在为复杂时空数据建模以及进行估计、学习和预测提供灵活框架方面具有更广泛的应用范围。