Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
J Physiol. 2010 Aug 1;588(Pt 15):2919-34. doi: 10.1113/jphysiol.2010.191445. Epub 2010 Jun 14.
The colonic migrating motor complex (CMMC) is a rhythmically occurring neurally mediated motor pattern. Although the CMMC spontaneously propagates along an empty colon it is responsible for faecal pellet propulsion in the murine large bowel. Unlike the peristaltic reflex, the CMMC is an 'all or none' event that appears to be dependent upon Dogiel Type II/AH neurons for its regenerative slow propagation down the colon. A reduction in the amplitude of CMMCs or an elongated colon have both been thought to underlie slow transit constipation, although whether these phenomena are related has not been considered. In this study we examined the mechanisms by which colonic elongation might affect the CMMC using video imaging of the colon, tension and electrophysiological recordings from the muscle and Ca(2+) imaging of myenteric neurons. As faecal pellets were expelled from the murine colon, it shortened by up to 29%. Elongation of the colon resulted in a linear reduction in the velocity of a faecal pellet and the amplitude of spontaneous CMMCs. Elongation of the oral end of a colonic segment reduced the amplitude of CMMCs, whereas elongation of the anal end of the colon evoked a premature CMMC, and caused the majority of CMMCs to propagate in an anal to oral direction. Dogiel Type II/AH sensory neurons and most other myenteric neurons responded to oral elongation with reduced amplitude and frequency of spontaneous Ca(2+) transients, whereas anal elongation increased their amplitude and frequency in most neurons. The inhibitory effects of colonic elongation were reduced by blocking nitric oxide (NO) production with l-NA (100 mum) and soluble guanylate cyclase with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 mum); whereas, l-arginine (1-2 mm) enhanced the inhibitory effects of colonic elongation. In conclusion, polarized neural reflexes can be triggered by longitudinal stretch. The dominant effect of elongation is to reduce CMMCs primarily by inhibiting Dogiel Type II/AH neurons, thus facilitating colonic accommodation and slow transit.
结肠移行性运动复合波(CMMC)是一种节律性发生的神经介导运动模式。尽管 CMMC 会自发沿着空的结肠传播,但它负责推动小鼠大肠中的粪便颗粒。与蠕动反射不同,CMMC 是一种“全有或全无”的事件,似乎依赖于 Dogiel 型 II/AH 神经元来实现其在结肠中的再生缓慢传播。CMMC 幅度的降低或结肠的延长都被认为是导致慢传输性便秘的原因,尽管尚未考虑这些现象之间是否存在关联。在这项研究中,我们通过使用结肠的视频成像、肌肉的张力和电生理记录以及肠神经元的 Ca2+成像来检查结肠延长可能影响 CMMC 的机制。当粪便颗粒从小鼠结肠中排出时,结肠会缩短多达 29%。结肠的延长导致粪便颗粒的速度和自发性 CMMC 的幅度线性降低。结肠口腔端的延长会降低 CMMC 的幅度,而结肠肛门端的延长会诱发过早的 CMMC,并导致大多数 CMMC 以肛门到口腔的方向传播。Dogiel 型 II/AH 感觉神经元和大多数其他肠神经元对口腔延长的反应是自发 Ca2+瞬变的幅度和频率降低,而肛门延长则增加了大多数神经元的幅度和频率。通过用 l-NA(100µM)阻断一氧化氮(NO)产生和用 1H-[1,2,4]恶二唑并[4,3-a]喹喔啉-1-酮(ODQ;10µM)阻断可溶性鸟苷酸环化酶,可降低结肠延长的抑制作用;而 l-精氨酸(1-2mM)增强了结肠延长的抑制作用。总之,纵向拉伸可以引发极化的神经反射。延长的主要作用是通过抑制 Dogiel 型 II/AH 神经元来主要降低 CMMC,从而促进结肠顺应性和缓慢传输。