Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia.
Elife. 2019 Feb 12;8:e42914. doi: 10.7554/eLife.42914.
The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.
肠神经系统控制着多种胃肠道功能,包括肠道蠕动。引导蠕动的最小神经元回路已经得到很好的描述,但几个肠道区域还显示出其他运动模式,其潜在的回路和连接方案协调这些模式之间的转换尚不清楚。我们研究了在具有更丰富运动模式的区域中,潜在的神经回路是否反映了这种复杂性。使用钙成像,我们在局灶性网络刺激时确定了大量肠神经元的位置和反应特征。通过神经元追踪和突触接触的体积重建补充,这表明多功能的近端结肠与蠕动是主要运动模式的远端结肠相比,需要特定的额外回路组件。我们的研究表明,运动控制是在肠神经网络中硬连线的,并且回路复杂性与特定肠道区域的运动模式组合相匹配。