Department of Biology, University of South Dakota, Vermillion, SD 57069, USA.
Syst Biol. 2010 Jul;59(4):369-83. doi: 10.1093/sysbio/syq013. Epub 2010 Mar 29.
The rich knowledge of morphological variation among organisms reported in the systematic literature has remained in free-text format, impractical for use in large-scale synthetic phylogenetic work. This noncomputable format has also precluded linkage to the large knowledgebase of genomic, genetic, developmental, and phenotype data in model organism databases. We have undertaken an effort to prototype a curated, ontology-based evolutionary morphology database that maps to these genetic databases (http://kb.phenoscape.org) to facilitate investigation into the mechanistic basis and evolution of phenotypic diversity. Among the first requirements in establishing this database was the development of a multispecies anatomy ontology with the goal of capturing anatomical data in a systematic and computable manner. An ontology is a formal representation of a set of concepts with defined relationships between those concepts. Multispecies anatomy ontologies in particular are an efficient way to represent the diversity of morphological structures in a clade of organisms, but they present challenges in their development relative to single-species anatomy ontologies. Here, we describe the Teleost Anatomy Ontology (TAO), a multispecies anatomy ontology for teleost fishes derived from the Zebrafish Anatomical Ontology (ZFA) for the purpose of annotating varying morphological features across species. To facilitate interoperability with other anatomy ontologies, TAO uses the Common Anatomy Reference Ontology as a template for its upper level nodes, and TAO and ZFA are synchronized, with zebrafish terms specified as subtypes of teleost terms. We found that the details of ontology architecture have ramifications for querying, and we present general challenges in developing a multispecies anatomy ontology, including refinement of definitions, taxon-specific relationships among terms, and representation of taxonomically variable developmental pathways.
系统文献中报道的生物体形态变异的丰富知识仍然以自由文本格式存在,对于大规模综合系统发育工作而言并不实用。这种不可计算的格式也阻止了与模型生物数据库中基因组、遗传、发育和表型数据的大型知识库的链接。我们已经着手开发一个经过精心策划的、基于本体的进化形态学数据库原型,该数据库可与这些遗传数据库(http://kb.phenoscape.org)链接,以促进对表型多样性的机制基础和进化的研究。在建立这个数据库的第一个要求中,我们首先开发了一个多物种解剖本体,目的是以系统和可计算的方式捕获解剖数据。本体是一组概念的正式表示,这些概念之间具有定义的关系。特别是多物种解剖本体是表示一个生物类群中形态结构多样性的有效方法,但相对于单物种解剖本体,它们在开发方面存在挑战。在这里,我们描述了 Teleost Anatomy Ontology (TAO),这是一个针对硬骨鱼的多物种解剖本体,它源自用于在物种之间注释不同形态特征的 Zebrafish Anatomical Ontology (ZFA)。为了与其他解剖本体实现互操作性,TAO 使用 Common Anatomy Reference Ontology 作为其上层节点的模板,并且 TAO 和 ZFA 是同步的,斑马鱼术语被指定为硬骨鱼术语的子类型。我们发现本体架构的细节对查询有影响,并且我们提出了开发多物种解剖本体的一般挑战,包括定义的细化、术语之间的特定于分类群的关系以及分类群变量发育途径的表示。