Cellular Biophysics Group (BIOMS), German Cancer Research Center, c/o BIOQUANT, Heidelberg, Germany.
Biophys J. 2010 Jun 16;98(12):2839-47. doi: 10.1016/j.bpj.2010.03.035.
The dynamic compartmentalization of eukaryotic cells is a fascinating phenomenon that is not yet understood. A prominent example of this challenge is the Golgi apparatus, the central hub for protein sorting and lipid metabolism in the secretory pathway. Despite major advances in elucidating its molecular biology, the fundamental question of how the morphogenesis of this organelle is organized on a system level has remained elusive. Here, we have formulated a coarse-grained computational model that captures key features of the dynamic morphogenesis of a Golgi apparatus. In particular, our model relates the experimentally observed Golgi phenotypes, the typical turnover times, and the size and number of cisternae to three basic, experimentally accessible quantities: the rates for material influx from the endoplasmic reticulum, and the anterograde and retrograde transport rates. Based on these results, we propose which molecular factors should be mutated to alter the organelle's phenotype and dynamics.
真核细胞的动态区隔化是一个令人着迷的现象,但尚未被完全理解。这个挑战的一个突出例子是高尔基体,它是分泌途径中蛋白质分拣和脂质代谢的中心枢纽。尽管在阐明其分子生物学方面取得了重大进展,但关于这个细胞器的形态发生如何在系统水平上组织的基本问题仍然难以捉摸。在这里,我们制定了一个粗粒化的计算模型,该模型捕捉了高尔基体动态形态发生的关键特征。具体来说,我们的模型将实验观察到的高尔基体表型、典型的周转时间以及嵴的大小和数量与三个基本的、可实验获得的数量联系起来:从内质网流入的物质速率,以及顺行和逆行运输速率。基于这些结果,我们提出了应该突变哪些分子因素来改变细胞器的表型和动力学。