Suppr超能文献

高尔基器通过有丝分裂后重装配动力学自行组织成特征形状。

Golgi apparatus self-organizes into the characteristic shape via postmitotic reassembly dynamics.

机构信息

Theoretical Biology Laboratory, RIKEN, Wako 351-0198, Japan;

Interdisciplinary Theoretical Science Research Group, RIKEN, Wako 351-0198, Japan.

出版信息

Proc Natl Acad Sci U S A. 2017 May 16;114(20):5177-5182. doi: 10.1073/pnas.1619264114. Epub 2017 May 1.

Abstract

The Golgi apparatus is a membrane-bounded organelle with the characteristic shape of a series of stacked flat cisternae. During mitosis in mammalian cells, the Golgi apparatus is once fragmented into small vesicles and then reassembled to form the characteristic shape again in each daughter cell. The mechanism and details of the reassembly process remain elusive. Here, by the physical simulation of a coarse-grained membrane model, we reconstructed the three-dimensional morphological dynamics of the Golgi reassembly process. Considering the stability of the interphase Golgi shape, we introduce two hypothetical mechanisms-the Golgi rim stabilizer protein and curvature-dependent restriction on membrane fusion-into the general biomembrane model. We show that the characteristic Golgi shape is spontaneously organized from the assembly of vesicles by proper tuning of the two additional mechanisms, i.e., the Golgi reassembly process is modeled as self-organization. We also demonstrate that the fine Golgi shape forms via a balance of three reaction speeds: vesicle aggregation, membrane fusion, and shape relaxation. Moreover, the membrane fusion activity decreases thickness and the number of stacked cisternae of the emerging shapes.

摘要

高尔基器是一种具有一系列堆叠的扁平潴泡特征形状的膜结合细胞器。在哺乳动物细胞的有丝分裂过程中,高尔基器首先被分割成小泡,然后在每个子细胞中重新组装形成特征形状。但是,其重新组装的机制和细节仍不清楚。在这里,我们通过粗粒化膜模型的物理模拟,重建了高尔基体重新组装过程的三维形态动力学。考虑到间期高尔基器形状的稳定性,我们将两个假设机制(高尔基器边缘稳定蛋白和对膜融合的曲率依赖性限制)引入到一般的生物膜模型中。我们表明,通过适当调整这两个附加机制,特征性的高尔基器形状是由小泡的组装自发组织形成的,即高尔基体的重新组装过程被建模为自组织。我们还证明,精细的高尔基器形状是通过小泡聚集、膜融合和形状松弛这三种反应速度的平衡来形成的。此外,膜融合活性降低了新形成的形状的厚度和堆叠潴泡的数量。

相似文献

3
Golgi biogenesis.高尔基复合体生物发生。
Cold Spring Harb Perspect Biol. 2011 Oct 1;3(10):a005330. doi: 10.1101/cshperspect.a005330.
6
A role for clathrin in reassembly of the Golgi apparatus.网格蛋白在高尔基体重新组装中的作用。
Mol Biol Cell. 2007 Jan;18(1):94-105. doi: 10.1091/mbc.e06-06-0532. Epub 2006 Oct 25.
7
Golgi apparatus partitioning during cell division.细胞分裂期间高尔基体的分配
Mol Membr Biol. 2003 Apr-Jun;20(2):117-27. doi: 10.1080/0968768031000084163.
9
(Re)modeling the Golgi.重塑高尔基体
Methods Cell Biol. 2013;118:299-310. doi: 10.1016/B978-0-12-417164-0.00018-5.

引用本文的文献

8
Mesoscale simulation of biomembranes with FreeDTS.用 FreeDTS 进行生物膜的介观模拟。
Nat Commun. 2024 Jan 16;15(1):548. doi: 10.1038/s41467-024-44819-w.

本文引用的文献

2
GRASPs in Golgi Structure and Function.高尔基复合体的结构与功能
Front Cell Dev Biol. 2016 Jan 6;3:84. doi: 10.3389/fcell.2015.00084. eCollection 2015.
5
Golgi fragmentation in Alzheimer's disease.阿尔茨海默病中的高尔基体碎片化
Front Neurosci. 2015 Sep 24;9:340. doi: 10.3389/fnins.2015.00340. eCollection 2015.
6
Organellar channels and transporters.细胞器通道与转运体
Cell Calcium. 2015 Jul;58(1):1-10. doi: 10.1016/j.ceca.2015.02.006. Epub 2015 Mar 2.
8
Structure and mechanism of COPI vesicle biogenesis.COPI 囊泡生物发生的结构与机制。
Curr Opin Cell Biol. 2014 Aug;29:67-73. doi: 10.1016/j.ceb.2014.04.009. Epub 2014 May 17.
10
Membrane adhesion dictates Golgi stacking and cisternal morphology.膜黏附决定高尔基体堆叠和小泡形态。
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1849-54. doi: 10.1073/pnas.1323895111. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验