Suppr超能文献

单个 LHCII 三聚体的荧光光谱动力学。

Fluorescence spectral dynamics of single LHCII trimers.

机构信息

Department of Biophysics, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.

出版信息

Biophys J. 2010 Jun 16;98(12):3093-101. doi: 10.1016/j.bpj.2010.03.028.

Abstract

Single-molecule spectroscopy was employed to elucidate the fluorescence spectral heterogeneity and dynamics of individual, immobilized trimeric complexes of the main light-harvesting complex of plants in solution near room temperature. Rapid reversible spectral shifts between various emitting states, each of which was quasi-stable for seconds to tens of seconds, were observed for a fraction of the complexes. Most deviating states were characterized by the appearance of an additional, red-shifted emission band. Reversible shifts of up to 75 nm were detected. By combining modified Redfield theory with a disordered exciton model, fluorescence spectra with peaks between 670 nm and 705 nm could be explained by changes in the realization of the static disorder of the pigment-site energies. Spectral bands beyond this wavelength window suggest the presence of special protein conformations. We attribute the large red shifts to the mixing of an excitonic state with a charge-transfer state in two or more strongly coupled chlorophylls. Spectral bluing is explained by the formation of an energy trap before excitation energy equilibration is completed.

摘要

采用单分子光谱技术,在室温附近的溶液中研究了固定化的三聚体植物主要光捕获复合物的荧光光谱异质性和动力学。对于一部分复合物,观察到了在各种发射态之间快速可逆的光谱位移,其中每个发射态在几秒钟到几十秒钟内都是准稳定的。大多数偏离态的特征是出现了一个额外的红移发射带。检测到的可逆位移高达 75nm。通过将改进的 Redfield 理论与无序激子模型相结合,可以解释在色素-位能的静态无序的实现上发生变化时,在 670nm 到 705nm 之间的峰值的荧光光谱。超出此波长窗口的光谱带表明存在特殊的蛋白质构象。我们将大的红移归因于两个或更多强耦合叶绿素中激子态与电荷转移态的混合。在激发能平衡完成之前形成能量陷阱,可以解释光谱蓝移现象。

相似文献

1
Fluorescence spectral dynamics of single LHCII trimers.
Biophys J. 2010 Jun 16;98(12):3093-101. doi: 10.1016/j.bpj.2010.03.028.
3
The specificity of controlled protein disorder in the photoprotection of plants.
Biophys J. 2013 Aug 20;105(4):1018-26. doi: 10.1016/j.bpj.2013.07.014.
5
How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II.
J Plant Physiol. 2011 Aug 15;168(12):1497-509. doi: 10.1016/j.jplph.2011.01.004. Epub 2011 Feb 16.
6
Spectral tuning of light-harvesting complex II in the siphonous alga Bryopsis corticulans and its effect on energy transfer dynamics.
Biochim Biophys Acta Bioenerg. 2020 Jul 1;1861(7):148191. doi: 10.1016/j.bbabio.2020.148191. Epub 2020 Mar 20.
7
Fluorescence spectroscopy of conformational changes of single LH2 complexes.
Biophys J. 2005 Jan;88(1):422-35. doi: 10.1529/biophysj.104.048629. Epub 2004 Oct 22.
9
Disentangling the low-energy states of the major light-harvesting complex of plants and their role in photoprotection.
Biochim Biophys Acta. 2014 Jul;1837(7):1027-38. doi: 10.1016/j.bbabio.2014.02.014. Epub 2014 Feb 20.
10
How reduced excitonic coupling enhances light harvesting in the main photosynthetic antennae of diatoms.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11063-E11071. doi: 10.1073/pnas.1714656115. Epub 2017 Dec 11.

引用本文的文献

1
Investigating the photophysical properties of rhodamines using a spectroscopic single-molecule fluorescence method.
RSC Adv. 2024 Dec 6;14(52):38523-38529. doi: 10.1039/d4ra06577h. eCollection 2024 Dec 3.
2
Hydrophobic Mismatch in the Thylakoid Membrane Regulates Photosynthetic Light Harvesting.
J Am Chem Soc. 2024 May 29;146(21):14905-14914. doi: 10.1021/jacs.4c05220. Epub 2024 May 17.
3
Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex.
J Phys Chem B. 2024 May 30;128(21):5201-5217. doi: 10.1021/acs.jpcb.4c01637. Epub 2024 May 16.
6
Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I.
J Phys Chem Lett. 2023 Sep 21;14(37):8345-8352. doi: 10.1021/acs.jpclett.3c02091. Epub 2023 Sep 13.
7
Towards the description of charge transfer states in solubilised LHCII using subsystem DFT.
Photosynth Res. 2023 Apr;156(1):39-57. doi: 10.1007/s11120-022-00950-7. Epub 2022 Aug 21.
8
Real-Time Feedback-Driven Single-Particle Tracking: A Survey and Perspective.
Small. 2022 Jul;18(29):e2107024. doi: 10.1002/smll.202107024. Epub 2022 Jun 27.
9
The Structural and Spectral Features of Light-Harvesting Complex II Proteoliposomes Mimic Those of Native Thylakoid Membranes.
J Phys Chem Lett. 2022 Jun 23;13(24):5683-5691. doi: 10.1021/acs.jpclett.2c01019. Epub 2022 Jun 16.

本文引用的文献

2
Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe?
Chemphyschem. 2009 Sep 14;10(13):2174-91. doi: 10.1002/cphc.200900200.
4
Protein dynamics-induced variation of excitation energy transfer pathways.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11857-61. doi: 10.1073/pnas.0903586106. Epub 2009 Jul 2.
6
Dynamic intracomplex heterogeneity of phytochrome.
J Am Chem Soc. 2009 Jan 14;131(1):69-71. doi: 10.1021/ja8058292.
7
Spectral diffusion induced by proton dynamics in pigment-protein complexes.
J Am Chem Soc. 2008 Dec 24;130(51):17487-93. doi: 10.1021/ja806216p.
9
Heating by absorption in the focus of an objective lens.
Opt Lett. 1998 Mar 1;23(5):325-7. doi: 10.1364/ol.23.000325.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验