Suppr超能文献

用于辐射防护剂量学的可变形成人人体模型:代表成人工作人群大小分布的人体测量学数据和软件算法。

Deformable adult human phantoms for radiation protection dosimetry: anthropometric data representing size distributions of adult worker populations and software algorithms.

机构信息

Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Phys Med Biol. 2010 Jul 7;55(13):3789-811. doi: 10.1088/0031-9155/55/13/015. Epub 2010 Jun 15.

Abstract

Computational phantoms representing workers and patients are essential in estimating organ doses from various occupational radiation exposures and medical procedures. Nearly all existing phantoms, however, were purposely designed to match internal and external anatomical features of the Reference Man as defined by the International Commission on Radiological Protection (ICRP). To reduce uncertainty in dose calculations caused by anatomical variations, a new generation of phantoms of varying organ and body sizes is needed. This paper presents detailed anatomical data in tables and graphs that are used to design such size-adjustable phantoms representing a range of adult individuals in terms of the body height, body weight and internal organ volume/mass. Two different sets of information are used to derive the phantom sets: (1) individual internal organ size and volume/mass distribution data derived from the recommendations of the ICRP in Publications 23 and 89 and (2) whole-body height and weight percentile data from the National Health and Nutrition Examination Survey (NHANES 1999-2002). The NHANES height and weight data for 19 year old males and females are used to estimate the distributions of individuals' size, which is unknown, that corresponds to the ICRP organ and tissue distributions. This paper then demonstrates the usage of these anthropometric data in the development of deformable anatomical phantoms. A pair of phantoms--modeled entirely in mesh surfaces--of the adult male and female, RPI-adult male (AM) and RPI-adult female (AF) are used as the base for size-adjustable phantoms. To create percentile-specific phantoms from these two base phantoms, organ surface boundaries are carefully altered according to the tabulated anthropometric data. Software algorithms are developed to automatically match the organ volumes and masses with desired values. Finally, these mesh-based, percentile-specific phantoms are converted into voxel-based phantoms for Monte Carlo radiation transport simulations. This paper also compares absorbed organ doses for the RPI-AM-5th-height and -weight percentile phantom (165 cm in height and 56 kg in weight) and the RPI-AM-95th-height and -weight percentile phantom (188 cm in height and 110 kg in weight) with those for the RPI-AM-50th-height and -weight percentile phantom (176 cm in height and 73 kg in weight) from exposures to 0.5 MeV external photon beams. The results suggest a general finding that the phantoms representing a slimmer and shorter individual male received higher absorbed organ doses because of lesser degree of photon attenuation due to smaller amount of body fat. In particular, doses to the prostate and adrenal in the RPI-AM-5th-height and -weight percentile phantom is about 10% greater than those in the RPI-AM-50th-height and -weight percentile phantom approximating the ICRP Reference Man. On the other hand, the doses to the prostate and adrenal in the RPI-AM-95th-height and -weight percentile phantom are approximately 20% greater than those in the RPI-AM-50th-height and -weight percentile phantom. Although this study only considered the photon radiation of limited energies and irradiation geometries, the potential to improve the organ dose accuracy using the deformable phantom technology is clearly demonstrated.

摘要

用于估计各种职业辐射暴露和医疗程序中器官剂量的计算体模,代表工人和患者,是必不可少的。然而,几乎所有现有的体模都是专门设计的,以匹配国际辐射防护委员会 (ICRP) 定义的参考人的内部和外部解剖特征。为了减少由于解剖变异而导致的剂量计算不确定性,需要新一代具有不同器官和体型的体模。本文以表格和图形的形式提供了详细的解剖数据,用于设计这种可调节大小的体模,代表了一系列成年个体,其身高、体重和内部器官体积/质量各不相同。使用两组不同的信息来得出体模集:(1) 来自 ICRP 出版物 23 和 89 中建议的个体内部器官大小和体积/质量分布数据,以及 (2) 来自国家健康和营养检查调查 (NHANES 1999-2002) 的全身高度和体重百分位数数据。使用 NHANES 19 岁男性和女性的身高和体重数据来估计与 ICRP 器官和组织分布相对应的个体大小的分布情况,因为个体大小是未知的。本文然后演示了如何在可变形解剖体模的开发中使用这些人体测量数据。一对完全由网格表面建模的成年男性和女性,RPI 成年男性 (AM) 和 RPI 成年女性 (AF),用作可调节大小体模的基础。为了从这两个基础体模创建特定百分位的体模,根据表格化的人体测量数据仔细改变器官表面边界。开发了软件算法来自动将器官体积和质量与所需值匹配。最后,将这些基于网格的特定百分位体模转换为用于蒙特卡罗辐射传输模拟的体素体模。本文还比较了 RPI-AM-5th-height 和 -weight 百分位体模 (165 厘米高,56 公斤重) 和 RPI-AM-95th-height 和 -weight 百分位体模 (188 厘米高,110 公斤重) 与 RPI-AM-50th-height 和 -weight 百分位体模 (176 厘米高,73 公斤重) 的吸收器官剂量,这些体模受到 0.5 MeV 外光子束的照射。结果表明,一般来说,代表更苗条和更矮的个体男性的体模接收到更高的吸收器官剂量,因为由于体脂肪量较小,光子衰减程度较小。特别是,RPI-AM-5th-height 和 -weight 百分位体模中的前列腺和肾上腺的剂量比 RPI-AM-50th-height 和 -weight 百分位体模中的剂量高约 10%,接近 ICRP 参考人。另一方面,RPI-AM-95th-height 和 -weight 百分位体模中的前列腺和肾上腺的剂量比 RPI-AM-50th-height 和 -weight 百分位体模中的剂量高约 20%。尽管这项研究仅考虑了有限能量和照射几何形状的光子辐射,但使用可变形体模技术提高器官剂量准确性的潜力显然得到了证明。

相似文献

4
Dose coefficients of percentile-specific computational phantoms for photon external exposures.
Radiat Environ Biophys. 2020 Mar;59(1):151-160. doi: 10.1007/s00411-019-00818-w. Epub 2019 Nov 2.
5
DEVELOPMENT OF A SET OF MESH-BASED AND AGE-DEPENDENT CHINESE PHANTOMS AND APPLICATION FOR CT DOSE CALCULATIONS.
Radiat Prot Dosimetry. 2018 Jun 1;179(4):370-382. doi: 10.1093/rpd/ncx296.
8
Body-size-dependent phantom library constructed from ICRP mesh-type reference computational phantoms.
Phys Med Biol. 2020 Jun 19;65(12):125014. doi: 10.1088/1361-6560/ab8ddc.
9
On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry.
Phys Med Biol. 2006 Nov 7;51(21):N393-402. doi: 10.1088/0031-9155/51/21/N03. Epub 2006 Oct 17.
10
Organ dose calculations by Monte Carlo modeling of the updated VCH adult male phantom against idealized external proton exposure.
Phys Med Biol. 2008 Jul 21;53(14):3697-722. doi: 10.1088/0031-9155/53/14/001. Epub 2008 Jun 23.

引用本文的文献

2
AI-enhanced patient-specific dosimetry in I-131 planar imaging with a single oblique view.
Sci Rep. 2025 Jul 8;15(1):24381. doi: 10.1038/s41598-025-09212-7.
4
An update on computational anthropomorphic anatomical models.
Digit Health. 2022 Jul 11;8:20552076221111941. doi: 10.1177/20552076221111941. eCollection 2022 Jan-Dec.
5
Whole-body voxel-based internal dosimetry using deep learning.
Eur J Nucl Med Mol Imaging. 2021 Mar;48(3):670-682. doi: 10.1007/s00259-020-05013-4. Epub 2020 Sep 1.
7
Patient organ and effective dose estimation in CT: comparison of four software applications.
Eur Radiol Exp. 2020 Feb 14;4(1):14. doi: 10.1186/s41747-019-0130-5.
9
VirtualDose-IR: a cloud-based software for reporting organ doses in interventional radiology.
Phys Med Biol. 2019 Apr 26;64(9):095012. doi: 10.1088/1361-6560/ab0bd5.
10
Advances in Computational Human Phantoms and Their Applications in Biomedical Engineering - A Topical Review.
IEEE Trans Radiat Plasma Med Sci. 2019 Jan;3(1):1-23. doi: 10.1109/TRPMS.2018.2883437.

本文引用的文献

1
Report of the task group on reference man.
Ann ICRP. 1979;3(1-4):iii. doi: 10.1016/0146-6453(79)90123-4.
3
Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software.
Phys Med Biol. 2009 Sep 7;54(17):N375-83. doi: 10.1088/0031-9155/54/17/N01. Epub 2009 Aug 4.
4
The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization.
Phys Med Biol. 2009 Jun 21;54(12):3613-29. doi: 10.1088/0031-9155/54/12/001. Epub 2009 May 21.
5
Development of a geometry-based respiratory motion-simulating patient model for radiation treatment dosimetry.
J Appl Clin Med Phys. 2008 Jan 21;9(1):2700. doi: 10.1120/jacmp.v9i1.2700.
9
Voxel-based computational models of real human anatomy: a review.
Radiat Environ Biophys. 2004 Feb;42(4):229-35. doi: 10.1007/s00411-003-0221-8. Epub 2004 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验