Altran, Seestrasse 513, CH-8038 Zürich, Switzerland.
J Neural Eng. 2010 Aug;7(4):046004. doi: 10.1088/1741-2560/7/4/046004. Epub 2010 Jun 16.
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
在这项工作中,我们致力于解决以最小的必要能量和最小电荷量刺激神经组织的问题。电荷量最小化与一个合理的安全问题相关(避免和减少刺激引起的组织和电极损伤)。能量最小化在电池驱动的电刺激或磁刺激系统中起着重要作用(延长使用寿命、提高重复率、降低功率需求、热管理)。通过采用最优控制理论框架,得到了广泛的新理论结果。这些结果包括:针对混合能量/电荷量最小化问题推导出最优电刺激波形;推导出电荷平衡的能量最小化电刺激波形;在刺激幅度无约束和有约束两种情况下解决纯电荷量最小化问题;以及推导出能量最小化的磁刺激波形。根据设定的刺激脉冲持续时间,能量和电荷量的减少可达 80%。通过对一个活跃的、类似哺乳动物的神经纤维模型进行模拟验证了这些结果。