Jezernik Saso, Morari Manfred
wiss Federal Institute of Technology (ETH Zürich), Automatic Control Laboratory, Physikstrasse 3, 8092 Zürich, Switzerland.
IEEE Trans Biomed Eng. 2005 Apr;52(4):740-3. doi: 10.1109/TBME.2005.844050.
We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.
基于解析神经膜模型和动力系统的最优控制理论,我们推导了用于神经纤维电刺激的能量最优刺激电流波形。计算了非泄漏膜和泄漏膜的最优刺激波形。泄漏膜的情况是实际情况。最后,我们比较了刺激波形为方波电流脉冲时和能量最优刺激情况下,激发泄漏膜所需的波形和能量。最优刺激波形是指数上升波形,与方波脉冲相比,激发神经所需的能量要少得多(对于较大的脉冲持续时间尤其如此)。所描述的理论结果可大幅延长植入式生物医学系统的电池寿命和/或降低能量传输要求。