Suppr超能文献

在曲线运动中,线性和角运动分量的耳石-管交互作用和检测阈值。

Canal-otolith interactions and detection thresholds of linear and angular components during curved-path self-motion.

机构信息

Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

J Neurophysiol. 2010 Aug;104(2):765-73. doi: 10.1152/jn.01067.2009. Epub 2010 Jun 16.

Abstract

Gravitational signals arising from the otolith organs and vertical plane rotational signals arising from the semicircular canals interact extensively for accurate estimation of tilt and inertial acceleration. Here we used a classical signal detection paradigm to examine perceptual interactions between otolith and horizontal semicircular canal signals during simultaneous rotation and translation on a curved path. In a rotation detection experiment, blindfolded subjects were asked to detect the presence of angular motion in blocks where half of the trials were pure nasooccipital translation and half were simultaneous translation and yaw rotation (curved-path motion). In separate, translation detection experiments, subjects were also asked to detect either the presence or the absence of nasooccipital linear motion in blocks, in which half of the trials were pure yaw rotation and half were curved path. Rotation thresholds increased slightly, but not significantly, with concurrent linear velocity magnitude. Yaw rotation detection threshold, averaged across all conditions, was 1.45 +/- 0.81 degrees/s (3.49 +/- 1.95 degrees/s(2)). Translation thresholds, on the other hand, increased significantly with increasing magnitude of concurrent angular velocity. Absolute nasooccipital translation detection threshold, averaged across all conditions, was 2.93 +/- 2.10 cm/s (7.07 +/- 5.05 cm/s(2)). These findings suggest that conscious perception might not have independent access to separate estimates of linear and angular movement parameters during curved-path motion. Estimates of linear (and perhaps angular) components might instead rely on integrated information from canals and otoliths. Such interaction may underlie previously reported perceptual errors during curved-path motion and may originate from mechanisms that are specialized for tilt-translation processing during vertical plane rotation.

摘要

耳石器官产生的重力信号和半规管产生的垂直平面旋转信号在精确估计倾斜和惯性加速度方面相互作用广泛。在这里,我们使用经典的信号检测范式来研究在曲线路径上同时旋转和平移时耳石和水平半规管信号之间的感知相互作用。在旋转检测实验中,蒙住眼睛的受试者被要求在一半试验为单纯前后平移而另一半为同时平移和偏航旋转(曲线路径运动)的块中检测到角运动的存在。在单独的平移检测实验中,受试者还被要求在一半试验为单纯偏航旋转而另一半为曲线路径的块中检测到头尾线性运动的存在或不存在。旋转阈值随同时的线性速度幅度略有增加,但没有显著增加。偏航旋转检测阈值,在所有条件下平均,为 1.45 +/- 0.81 度/秒(3.49 +/- 1.95 度/秒 2)。另一方面,平移阈值随同时角速度幅度的增加而显著增加。在所有条件下平均的绝对头尾平移检测阈值为 2.93 +/- 2.10 cm/s(7.07 +/- 5.05 cm/s 2)。这些发现表明,在曲线路径运动期间,意识感知可能无法独立获得线性和角运动参数的单独估计。线性(也许是角)分量的估计可能依赖于来自半规管和耳石的综合信息。这种相互作用可能是以前报告的曲线路径运动中感知错误的基础,并且可能源于专门用于垂直平面旋转中倾斜-平移处理的机制。

相似文献

1
Canal-otolith interactions and detection thresholds of linear and angular components during curved-path self-motion.
J Neurophysiol. 2010 Aug;104(2):765-73. doi: 10.1152/jn.01067.2009. Epub 2010 Jun 16.
3
The contribution of otoliths and semicircular canals to the perception of two-dimensional passive whole-body motion in humans.
J Physiol. 1997 Jul 1;502 ( Pt 1)(Pt 1):223-33. doi: 10.1111/j.1469-7793.1997.223bl.x.
4
A linear canal-otolith interaction model to describe the human vestibulo-ocular reflex.
Biol Cybern. 1999 Aug;81(2):109-18. doi: 10.1007/s004220050548.
5
Interaction between otolith organ and semicircular canal vestibulo-ocular reflexes during eccentric rotation in humans.
Exp Brain Res. 2008 Mar;185(3):485-95. doi: 10.1007/s00221-007-1167-x. Epub 2007 Oct 30.
7
Geometrical considerations on canal-otolith interactions during OVAR and Bayesian modelling.
Prog Brain Res. 2008;171:287-90. doi: 10.1016/S0079-6123(08)00641-9.
8
Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation.
J Neurophysiol. 2006 Mar;95(3):1936-48. doi: 10.1152/jn.00856.2005. Epub 2005 Nov 30.
9
Linearity of canal-otolith interaction during eccentric rotation in humans.
Exp Brain Res. 2002 Nov;147(1):29-37. doi: 10.1007/s00221-002-1214-6. Epub 2002 Sep 13.
10
Time course and magnitude of illusory translation perception during off-vertical axis rotation.
J Neurophysiol. 2006 Mar;95(3):1571-87. doi: 10.1152/jn.00613.2005. Epub 2005 Nov 30.

引用本文的文献

1
Multisensory coding of self-motion and its contribution to navigation.
Nat Rev Neurosci. 2025 Sep 15. doi: 10.1038/s41583-025-00970-x.
2
Disrupted Rotational Perception During Simultaneous Stimulation of Rotation and Inertia.
Cerebellum. 2024 Oct;23(5):2003-2011. doi: 10.1007/s12311-024-01698-7. Epub 2024 May 3.
3
Temporal and spatial properties of vestibular signals for perception of self-motion.
Front Neurol. 2023 Sep 13;14:1266513. doi: 10.3389/fneur.2023.1266513. eCollection 2023.
4
Influence of sensory modality and control dynamics on human path integration.
Elife. 2022 Feb 18;11:e63405. doi: 10.7554/eLife.63405.
5
Vestibular Precision at the Level of Perception, Eye Movements, Posture, and Neurons.
Neuroscience. 2021 Aug 1;468:282-320. doi: 10.1016/j.neuroscience.2021.05.028. Epub 2021 Jun 2.
6
Vestibular Thresholds: A Review of Advances and Challenges in Clinical Applications.
Front Neurol. 2021 Feb 19;12:643634. doi: 10.3389/fneur.2021.643634. eCollection 2021.
8
Vestibular processing during natural self-motion: implications for perception and action.
Nat Rev Neurosci. 2019 Jun;20(6):346-363. doi: 10.1038/s41583-019-0153-1.
9
Vestibular System and Self-Motion.
Front Cell Neurosci. 2018 Nov 22;12:456. doi: 10.3389/fncel.2018.00456. eCollection 2018.
10
Clustering of heading selectivity and perception-related activity in the ventral intraparietal area.
J Neurophysiol. 2018 Mar 1;119(3):1113-1126. doi: 10.1152/jn.00556.2017. Epub 2017 Nov 29.

本文引用的文献

1
How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus.
Ann N Y Acad Sci. 2009 May;1164:19-28. doi: 10.1111/j.1749-6632.2009.03939.x.
2
Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception.
J Neurosci. 2009 Jul 15;29(28):8936-45. doi: 10.1523/JNEUROSCI.1607-09.2009.
3
Vestibular thresholds for yaw rotation about an earth-vertical axis as a function of frequency.
Exp Brain Res. 2008 Apr;186(4):677-81. doi: 10.1007/s00221-008-1350-8. Epub 2008 Mar 19.
4
Vestibular signals in primate thalamus: properties and origins.
J Neurosci. 2007 Dec 12;27(50):13590-602. doi: 10.1523/JNEUROSCI.3931-07.2007.
5
Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame.
Neuron. 2007 Jun 21;54(6):973-85. doi: 10.1016/j.neuron.2007.06.003.
6
A reevaluation of the inverse dynamic model for eye movements.
J Neurosci. 2007 Feb 7;27(6):1346-55. doi: 10.1523/JNEUROSCI.3822-06.2007.
7
Spatial properties of central vestibular neurons.
J Neurophysiol. 2006 Jan;95(1):464-78. doi: 10.1152/jn.00459.2005. Epub 2005 Sep 28.
8
Otolith and canal integration on single vestibular neurons in cats.
Exp Brain Res. 2005 Jul;164(3):271-85. doi: 10.1007/s00221-005-2341-7. Epub 2005 Jul 1.
9
Neurons compute internal models of the physical laws of motion.
Nature. 2004 Jul 29;430(6999):560-4. doi: 10.1038/nature02754.
10
An integrative neural network for detecting inertial motion and head orientation.
J Neurophysiol. 2004 Aug;92(2):905-25. doi: 10.1152/jn.01234.2003. Epub 2004 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验