Suppr超能文献

原核生物来源的肽酶抑制剂:一个简略的发生和大多未知的功能。

Prokaryote-derived protein inhibitors of peptidases: A sketchy occurrence and mostly unknown function.

机构信息

Department of Microbiology, Jagiellonian University, Krakow, Poland.

出版信息

Biochimie. 2010 Nov;92(11):1644-56. doi: 10.1016/j.biochi.2010.06.004. Epub 2010 Jun 14.

Abstract

In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment.

摘要

在后生动物生物体内,蛋白酶抑制剂是调节蛋白水解活性所必需的重要因素。在脊椎动物中,编码蛋白酶抑制剂的基因构成了基因总数的 1%,这反映了对蛋白水解的紧密和特异性控制的需求,尤其是在细胞外体液中。相比之下,单细胞生物,无论是原核生物还是真核生物,始终只包含少数(如果有的话)编码潜在蛋白酶抑制剂的基因。这在这些生物体产生不同催化类别的大量蛋白酶的情况下似乎令人费解,这些基因构成了总基因数的 6%,平均值约为 3%。然而,显然单细胞生活方式完全可以与其他蛋白水解调节机制相兼容,并不需要蛋白质抑制剂来控制其细胞内和细胞外的蛋白水解活性。因此,在原核生物中,编码不同类型蛋白酶抑制剂的基因的出现频率较低,而且通常分散在系统发育上不同的菌群或甚至门中。编码与α-2-巨球蛋白(家族 I39)、丝氨酸羧肽酶 Y 抑制剂(家族 I51)、α-1-肽酶抑制剂(家族 I4)和 ecotin(家族 I11)同源的蛋白的基因在细菌中最为常见。尽管这些基因产物中的几种具有抑制活性,但除了 ecotin 和 staphostatins 之外,微生物抑制剂的生物学功能尚不清楚。在这篇综述中,我们介绍了不同家族的蛋白抑制剂在原核生物中的分布,描述了它们的作用模式,并假设了它们在微生物生理学以及与宿主和环境相互作用中的作用。

相似文献

1
Prokaryote-derived protein inhibitors of peptidases: A sketchy occurrence and mostly unknown function.
Biochimie. 2010 Nov;92(11):1644-56. doi: 10.1016/j.biochi.2010.06.004. Epub 2010 Jun 14.
2
Protein Tagging, Destruction and Infection.
Curr Protein Pept Sci. 2018;19(2):155-171. doi: 10.2174/1389203718666170713100627.
3
Sweet New Roles for Protein Glycosylation in Prokaryotes.
Trends Microbiol. 2017 Aug;25(8):662-672. doi: 10.1016/j.tim.2017.03.001. Epub 2017 Mar 21.
5
Diversity in chemotaxis mechanisms among the bacteria and archaea.
Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19. doi: 10.1128/MMBR.68.2.301-319.2004.
6
Peptidases and peptidase inhibitors in gut of caterpillars and in the latex of their host plants.
Planta. 2015 Jan;241(1):167-78. doi: 10.1007/s00425-014-2174-3. Epub 2014 Sep 23.
7
Genomic Insights into the Distribution of Peptidases and Proteolytic Capacity among and Species.
Microbiol Spectr. 2022 Apr 27;10(2):e0218521. doi: 10.1128/spectrum.02185-21. Epub 2022 Apr 4.
9
Plant protein peptidase inhibitors: an evolutionary overview based on comparative genomics.
BMC Genomics. 2014 Sep 25;15(1):812. doi: 10.1186/1471-2164-15-812.
10
One step beyond a ribosome: The ancient anaerobic core.
Biochim Biophys Acta. 2016 Aug;1857(8):1027-1038. doi: 10.1016/j.bbabio.2016.04.284. Epub 2016 May 2.

引用本文的文献

1
NMR structure of emfourin, a novel protein metalloprotease inhibitor: Insights into the mechanism of action.
J Biol Chem. 2023 Apr;299(4):104585. doi: 10.1016/j.jbc.2023.104585. Epub 2023 Mar 6.
2
A unique network of attack, defence and competence on the outer membrane of the periodontitis pathogen .
Chem Sci. 2022 Dec 12;14(4):869-888. doi: 10.1039/d2sc04166a. eCollection 2023 Jan 25.
3
A disordered region retains the full protease inhibitor activity and the capacity to induce CD8 T cells of the oral vaccine adjuvant U-Omp19.
Comput Struct Biotechnol J. 2022 Sep 6;20:5098-5114. doi: 10.1016/j.csbj.2022.08.054. eCollection 2022.
5
Gut Serpinome: Emerging Evidence in IBD.
Int J Mol Sci. 2021 Jun 4;22(11):6088. doi: 10.3390/ijms22116088.
6
Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114.
Arch Microbiol. 2021 Aug;203(6):3373-3388. doi: 10.1007/s00203-021-02327-1. Epub 2021 Apr 21.
7
A Comprehensive Phylogenetic Analysis of the Serpin Superfamily.
Mol Biol Evol. 2021 Jun 25;38(7):2915-2929. doi: 10.1093/molbev/msab081.
8
Characterization of ecotin homologs from Campylobacter rectus and Campylobacter showae.
PLoS One. 2020 Dec 30;15(12):e0244031. doi: 10.1371/journal.pone.0244031. eCollection 2020.
9
Proteolytic systems of archaea: slicing, dicing, and mincing in the extreme.
Emerg Top Life Sci. 2018 Dec;2(4):561-580. doi: 10.1042/etls20180025. Epub 2018 Nov 14.

本文引用的文献

1
2
Engineering ecotin for identifying proteins with a trypsin fold.
Appl Biochem Biotechnol. 2010 Apr;160(8):2355-65. doi: 10.1007/s12010-009-8711-z. Epub 2009 Aug 30.
3
Intracellular life of Coxiella burnetii in macrophages.
Ann N Y Acad Sci. 2009 May;1166:55-66. doi: 10.1111/j.1749-6632.2009.04515.x.
5
Influence of parasite encoded inhibitors of serine peptidases in early infection of macrophages with Leishmania major.
Cell Microbiol. 2009 Jan;11(1):106-20. doi: 10.1111/j.1462-5822.2008.01243.x. Epub 2008 Oct 29.
6
Two different proteases from Streptomyces hygroscopicus are involved in transglutaminase activation.
J Agric Food Chem. 2008 Nov 12;56(21):10261-4. doi: 10.1021/jf8008519. Epub 2008 Oct 15.
7
alpha-Macroglobulins are present in some gram-negative bacteria: characterization of the alpha2-macroglobulin from Escherichia coli.
J Biol Chem. 2008 Oct 17;283(42):28747-56. doi: 10.1074/jbc.M803127200. Epub 2008 Aug 12.
9
Displacement of the occluding loop by the parasite protein, chagasin, results in efficient inhibition of human cathepsin B.
J Biol Chem. 2008 Aug 15;283(33):22815-25. doi: 10.1074/jbc.M802064200. Epub 2008 May 30.
10
Biological properties of elastase inhibitor, AFLEI from Aspergillus flavus.
Nihon Ishinkin Gakkai Zasshi. 2008;49(2):87-93. doi: 10.3314/jjmm.49.87.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验