文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基因组视角下 和 种属中肽酶与蛋白水解能力的分布。

Genomic Insights into the Distribution of Peptidases and Proteolytic Capacity among and Species.

机构信息

Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, India.

Department of Animal Sciences, Ohio State University, Columbus, Ohio, USA.

出版信息

Microbiol Spectr. 2022 Apr 27;10(2):e0218521. doi: 10.1128/spectrum.02185-21. Epub 2022 Apr 4.


DOI:10.1128/spectrum.02185-21
PMID:35377228
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9045265/
Abstract

Bacterial peptidases play important roles in health and nutrient digestion in both humans and animals, especially ruminant animals. In this study, we examined and compared the various peptidases (both total and secretory) among species of Prevotella (44 in total) and (2) revealed in their sequenced genomes that were archived in the MEROPS database. The phylogenetic relationships were also compared among the species based on 16S rRNA gene sequences and the occurrence of peptidases. A rich repertoire of peptidases was found that represents six catalytic types of peptidases (aspartic, cysteine, glutamic, metallo, mixed, and serine), together with some with unknown catalytic mechanisms, and 78 families. Metallopeptidases were the most predominant, followed by serine and cysteine peptidases. Considerable variations in peptidase occurrence and distribution were noted among the species and the different families of peptidases. A total of 48 different families of secretory peptidases were found in the genomes of the Prevotella and Paraprevotella species. Secretory peptidases in the families of S41 and M13 were ubiquitous, and S9, M16, C1, S13, and C69 were found in more than 95% of the species. Multivariate analysis of the peptidases indicated that species were mostly clustered except for a few species. Analysis using a bipartite association network showed that the majority of peptidase families were shared among the species. The relatedness of peptidase distributions among the species did not significantly correlate with their phylogenetic relationship based on the 16S rRNA genes. The genomic overview on the peptidases of Prevotella and Paraprevotella species provided new insights into their potential capacity to degrade proteins. Species of Prevotella are prevalent and predominant bacteria residing in animals and humans, and their proteolytic capacity and activity play important roles in nutrient utilization in animals (especially ruminants) and some anaerobic infections of the intestinal, respiratory, and urinary tracts in humans. This study reveals the large repertoire and wide distribution of metallo, serine, and cysteine peptidases, especially secretory peptidases, among the Prevotella species. The information presented here could aid in the identification of the Prevotella species and the peptidases to target to decrease the excessive protein degradation in the rumen and improve dietary nitrogen utilization by ruminant animals.

摘要

细菌肽酶在人类和动物的健康和营养消化中发挥着重要作用,尤其是反刍动物。在这项研究中,我们检查和比较了Prevotella (共 44 种)和 (共 2 种)物种中各种肽酶(总肽酶和分泌肽酶),这些物种的序列基因组已存档在 MEROPS 数据库中。还基于 16S rRNA 基因序列和肽酶的存在比较了物种之间的系统发育关系。发现了丰富的肽酶谱,代表了六种催化类型的肽酶(天冬氨酸、半胱氨酸、谷氨酸、金属、混合和丝氨酸),以及一些具有未知催化机制的肽酶,共有 78 个家族。金属肽酶最为普遍,其次是丝氨酸和半胱氨酸肽酶。在物种和不同的肽酶家族之间,肽酶的发生和分布存在相当大的差异。在 Prevotella 和 Paraprevotella 物种的基因组中发现了总共 48 种不同的分泌肽酶家族。S41 和 M13 家族的分泌肽酶普遍存在,S9、M16、C1、S13 和 C69 存在于 95%以上的物种中。对肽酶的多元分析表明,除了少数物种外,大多数物种都聚集在一起。使用二分关联网络分析表明,大多数肽酶家族在物种之间共享。根据 16S rRNA 基因,物种之间肽酶分布的相关性与它们的系统发育关系没有显著相关性。Prevotella 和 Paraprevotella 物种的肽酶基因组概述为它们降解蛋白质的潜在能力提供了新的见解。Prevotella 物种是存在于动物和人类中的优势细菌,它们的蛋白水解能力和活性在动物(尤其是反刍动物)的营养利用和人类肠道、呼吸道和泌尿道的一些厌氧感染中起着重要作用。本研究揭示了 Prevotella 物种中丰富的金属、丝氨酸和半胱氨酸肽酶谱,尤其是分泌肽酶谱。本研究结果为鉴定 Prevotella 物种和靶向肽酶提供了信息,以减少瘤胃中过度的蛋白质降解,提高反刍动物对日粮氮的利用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/2c890e1bd06b/spectrum.02185-21-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/e74d17650762/spectrum.02185-21-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/6ccd001b2c14/spectrum.02185-21-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/845f54955256/spectrum.02185-21-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/9e7c3d617ca1/spectrum.02185-21-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/d23c26d82622/spectrum.02185-21-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/dbf50271891a/spectrum.02185-21-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/2fa17f7228f1/spectrum.02185-21-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/529e4ab97312/spectrum.02185-21-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/2c890e1bd06b/spectrum.02185-21-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/e74d17650762/spectrum.02185-21-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/6ccd001b2c14/spectrum.02185-21-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/845f54955256/spectrum.02185-21-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/9e7c3d617ca1/spectrum.02185-21-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/d23c26d82622/spectrum.02185-21-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/dbf50271891a/spectrum.02185-21-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/2fa17f7228f1/spectrum.02185-21-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/529e4ab97312/spectrum.02185-21-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1452/9045265/2c890e1bd06b/spectrum.02185-21-f009.jpg

相似文献

[1]
Genomic Insights into the Distribution of Peptidases and Proteolytic Capacity among and Species.

Microbiol Spectr. 2022-4-27

[2]
Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China.

BMC Microbiol. 2013-7-8

[3]
Prediction of peptidase category based on functional domain composition.

J Proteome Res. 2008-10

[4]
Distributions of Extracellular Peptidases Across Prokaryotic Genomes Reflect Phylogeny and Habitat.

Front Microbiol. 2019-3-5

[5]
Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures.

Appl Microbiol Biotechnol. 2017-2-8

[6]
The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database.

Nucleic Acids Res. 2018-1-4

[7]
The Entamoeba histolytica genome: primary structure and expression of proteolytic enzymes.

BMC Genomics. 2007-6-14

[8]
New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases.

J Biochem. 2011-10-19

[9]
Plant protein peptidase inhibitors: an evolutionary overview based on comparative genomics.

BMC Genomics. 2014-9-25

[10]
Effect of the corn silage to grass silage ratio and feed particle size of diets for ruminants on the ruminal Bacteroides-Prevotella community in vitro.

Anaerobe. 2010-5-21

引用本文的文献

[1]
Molecular basis of Fab-dependent IgA antibody recognition by gut-bacterial metallopeptidases.

EMBO J. 2025-7-31

[2]
Effects of Yeast Cultures on Growth Performance, Fiber Digestibility, Ruminal Dissolved Gases, Antioxidant Capacity and Immune Activity of Beef Cattle.

Animals (Basel). 2025-5-17

[3]
Proteomics of Bacterial and Mouse Extracellular Vesicles Released in the Gastrointestinal Tracts of Nutrient-Stressed Animals Reveals an Interplay Between Microbial Serine Proteases and Mammalian Serine Protease Inhibitors.

Int J Mol Sci. 2025-4-25

[4]
HIV-associated penile anaerobes disrupt epithelial barrier integrity.

PLoS Pathog. 2025-4-17

[5]
Duodenum and Caecum Microbial Shift Modulates Immune and Antioxidant Response Through Energy Homeostasis in Sheep Fed Vegetable Waste and Rice Straw Silage.

Antioxidants (Basel). 2024-12-17

[6]
Probing the eukaryotic microbes of ruminants with a deep-learning classifier and comprehensive protein databases.

Genome Res. 2025-2-14

[7]
Exploring winter diet, gut microbiota and parasitism in caribou using multi-marker metabarcoding of fecal DNA.

Sci Rep. 2024-11-14

[8]
The Role of the Gut Microbiota in Complications among Hemodialysis Patients.

Microorganisms. 2024-9-12

[9]
Longitudinal profiling of the microbiome at four body sites reveals core stability and individualized dynamics during health and disease.

Cell Host Microbe. 2024-4-10

[10]
Long-Term Changes to the Microbiome, Blood Lipid Profiles and IL-6 in Female and Male Swedish Patients in Response to Bariatric Roux-en-Y Gastric Bypass.

Nutrients. 2024-2-9

本文引用的文献

[1]
Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation.

Nucleic Acids Res. 2021-7-2

[2]
An observational study of anaerobic bacteria in cystic fibrosis lung using culture dependant and independent approaches.

Sci Rep. 2021-3-25

[3]
Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host.

Animal. 2020-3

[4]
The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations.

Cell Host Microbe. 2019-10-10

[5]
Dietary Bioactive Lipid Compounds Rich in Menthol Alter Interactions Among Members of Ruminal Microbiota in Sheep.

Front Microbiol. 2019-9-4

[6]
Origins of peptidases.

Biochimie. 2019-8-1

[7]
Distributions of Extracellular Peptidases Across Prokaryotic Genomes Reflect Phylogeny and Habitat.

Front Microbiol. 2019-3-5

[8]
SignalP 5.0 improves signal peptide predictions using deep neural networks.

Nat Biotechnol. 2019-2-18

[9]
Insights into the Populations of Proteolytic and Amino Acid-Fermenting Bacteria from Microbiota Analysis Using In Vitro Enrichment Cultures.

Curr Microbiol. 2018-11

[10]
Persistence of Cellulolytic Bacteria and After Short-Term Corn Stover-Based Dietary Intervention Reveals the Potential to Improve Rumen Fibrolytic Function.

Front Microbiol. 2018-6-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索