Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA.
J Biol Chem. 2010 Sep 3;285(36):27850-8. doi: 10.1074/jbc.M110.101196. Epub 2010 Jun 17.
Mitochondrial reactive oxygen species (ROS) play an important role in both physiological cell signaling processes and numerous pathological states, including neurodegenerative disorders such as Parkinson disease. While mitochondria are considered the major cellular source of ROS, their role in ROS removal remains largely unknown. Using polarographic methods for real-time detection of steady-state H(2)O(2) levels, we were able to quantitatively measure the contributions of potential systems toward H(2)O(2) removal by brain mitochondria. Isolated rat brain mitochondria showed significant rates of exogenous H(2)O(2) removal (9-12 nmol/min/mg of protein) in the presence of substrates, indicating a respiration-dependent process. Glutathione systems showed only minimal contributions: 25% decrease with glutathione reductase inhibition and no effect by glutathione peroxidase inhibition. In contrast, inhibitors of thioredoxin reductase, including auranofin and 1-chloro-2,4-dinitrobenzene, attenuated H(2)O(2) removal rates in mitochondria by 80%. Furthermore, a 50% decrease in H(2)O(2) removal was observed following oxidation of peroxiredoxin. Differential oxidation of glutathione or thioredoxin proteins by copper (II) or arsenite, respectively, provided further support for the thioredoxin/peroxiredoxin system as the major contributor to mitochondrial H(2)O(2) removal. Inhibition of the thioredoxin system exacerbated mitochondrial H(2)O(2) production by the redox cycling agent, paraquat. Additionally, decreases in H(2)O(2) removal were observed in intact dopaminergic neurons with thioredoxin reductase inhibition, implicating this mechanism in whole cell systems. Therefore, in addition to their recognized role in ROS production, mitochondria also remove ROS. These findings implicate respiration- and thioredoxin-dependent ROS removal as a potentially important mitochondrial function that may contribute to physiological and pathological processes in the brain.
线粒体活性氧(ROS)在生理细胞信号转导过程和许多病理状态中都起着重要作用,包括帕金森病等神经退行性疾病。虽然线粒体被认为是ROS 的主要细胞来源,但它们在 ROS 清除中的作用在很大程度上仍然未知。我们使用极谱法实时检测稳态 H 2 O 2 水平,能够定量测量脑线粒体对 H 2 O 2 清除的潜在系统的贡献。在存在底物的情况下,分离的大鼠脑线粒体显示出显著的外源性 H 2 O 2 清除率(9-12 nmol/min/mg 蛋白质),表明这是一个依赖呼吸的过程。谷胱甘肽系统的贡献极小:谷胱甘肽还原酶抑制时减少 25%,谷胱甘肽过氧化物酶抑制时无影响。相比之下,硫氧还蛋白还原酶抑制剂,包括金诺芬和 1-氯-2,4-二硝基苯,可使线粒体中 H 2 O 2 的清除率降低 80%。此外,过氧化物酶的氧化可使 H 2 O 2 的清除率降低 50%。铜(II)或亚砷酸盐对谷胱甘肽或硫氧还蛋白蛋白的差异氧化分别为硫氧还蛋白/过氧化物酶系统作为线粒体 H 2 O 2 清除的主要贡献者提供了进一步的支持。还原型谷胱甘肽系统的抑制加剧了氧化还原循环试剂百草枯引起的线粒体 H 2 O 2 的产生。此外,硫氧还蛋白还原酶抑制时观察到完整多巴胺能神经元中 H 2 O 2 清除率降低,表明该机制在全细胞系统中起作用。因此,线粒体除了在 ROS 产生中具有公认的作用外,还可以清除 ROS。这些发现表明,呼吸和依赖硫氧还蛋白的 ROS 清除是线粒体的一个潜在重要功能,可能有助于大脑中的生理和病理过程。