Suppr超能文献

联合抑制一氧化氮和血管扩张性前列腺素可消除健康人体对全身缺氧的前臂血管舒张作用。

Combined inhibition of nitric oxide and vasodilating prostaglandins abolishes forearm vasodilatation to systemic hypoxia in healthy humans.

机构信息

Human Cardiovascular Physiology Laboratory, Department of Health and Exercise Science, Vascular Physiology Research Group, Colorado State University, Fort Collins, CO 80523-1582, USA.

出版信息

J Physiol. 2011 Apr 15;589(Pt 8):1979-90. doi: 10.1113/jphysiol.2011.205013. Epub 2011 Feb 21.

Abstract

We tested the hypothesis that nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute independently to hypoxic vasodilatation, and that combined inhibition would reveal a synergistic role for these two pathways in the regulation of peripheral vascular tone. In 20 healthy adults, we measured forearm blood flow (Doppler ultrasound) and calculated forearm vascular conductance (FVC) responses to steady-state (SS) isocapnic hypoxia (O₂ saturation 85%). All trials were performed during local α- and β-adrenoceptor blockade (via a brachial artery catheter) to eliminate sympathoadrenal influences on vascular tone and thus isolate local vasodilatory mechanisms. The individual and combined effects of NO synthase (NOS) and cyclooxygenase (COX) inhibition were determined by quantifying the vasodilatation from rest to SS hypoxia, as well as by quantifying how each inhibitor reduced vascular tone during hypoxia. Three hypoxia trials were performed in each subject. In group 1 (n = 10), trial 1, 5 min of SS hypoxia increased FVC from baseline (21 ± 3%; P < 0.05). Infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) for 5 min to inhibit NOS during continuous SS hypoxia reduced FVC by -33 ± 3% (P < 0.05). In Trial 2 with continuous NOS inhibition, the increase in FVC from baseline to SS hypoxia was similar to control conditions (20 ± 3%), and infusion of ketorolac for 5 min to inhibit COX during continuous SS hypoxia reduced FVC by -15 ± 3% (P < 0.05). In Trial 3 with combined NOS and COX inhibition, the increase in FVC from baseline to SS hypoxia was abolished (3%; NS vs. zero). In group 2 (n = 10), the order of NOS and COX inhibition was reversed. In trial 1, five minutes of SS hypoxia increased FVC from baseline (by 24 ± 5%; P < 0.05), and infusion of ketorolac during SS hypoxia had minimal impact on FVC (-4 ± 3%; NS). In Trial 2 with continuous COX inhibition, the increase in FVC from baseline to SS hypoxia was similar to control conditions (27 ± 4%), and infusion of L-NAME during continuous SS hypoxia reduced FVC by -36 ± 7% (P < 0.05). In Trial 3 with combined NOS and COX inhibition, the increase in FVC from baseline to SS hypoxia was abolished (~3%; NS vs. zero). Our collective findings indicate that (1) neither NO nor PGs are obligatory to observe the normal local vasodilatory response from rest to SS hypoxia; (2) NO regulates vascular tone during hypoxia independent of the COX pathway, whereas PGs only regulate vascular tone during hypoxia when NOS is inhibited; and (3) combined inhibition of NO and PGs abolishes local hypoxic vasodilatation (from rest to SS hypoxia) in the forearm circulation of healthy humans during systemic hypoxia.

摘要

我们检验了这样一个假设,即一氧化氮(NO)和血管舒张性前列腺素(PGs)独立地促进缺氧性血管舒张,并且联合抑制将揭示这两种途径在调节外周血管张力中的协同作用。在 20 名健康成年人中,我们测量了前臂血流量(多普勒超声)并计算了前臂血管传导性(FVC)对稳态(SS)等碳酸缺氧(O₂饱和度约为 85%)的反应。所有试验均在局部α和β肾上腺素能受体阻断(通过肱动脉导管)下进行,以消除血管紧张度对血管紧张度的交感肾上腺影响,从而分离局部血管舒张机制。通过量化从休息到 SS 缺氧的血管舒张以及量化每个抑制剂在缺氧期间如何降低血管紧张度,确定了一氧化氮合酶(NOS)和环氧化酶(COX)抑制的个体和联合作用。在每个受试者中进行了三次缺氧试验。在第 1 组(n = 10)中,在试验 1 中,5 分钟的 SS 缺氧将 FVC 从基线增加(21 ± 3%;P < 0.05)。在连续 SS 缺氧期间持续输注 N(G)-硝基-L-精氨酸甲酯(L-NAME)5 分钟以抑制 NOS,将 FVC 降低了-33 ± 3%(P < 0.05)。在持续 NOS 抑制的试验 2 中,FVC 从基线到 SS 缺氧的增加与对照条件相似(20 ± 3%),并且在连续 SS 缺氧期间输注酮咯酸持续 5 分钟以抑制 COX,将 FVC 降低了-15 ± 3%(P < 0.05)。在联合 NOS 和 COX 抑制的试验 3 中,FVC 从基线到 SS 缺氧的增加被消除(3%;与零相比无差异)。在第 2 组(n = 10)中,NOS 和 COX 抑制的顺序被颠倒。在试验 1 中,SS 缺氧 5 分钟将 FVC 从基线增加(增加 24 ± 5%;P < 0.05),并且在 SS 缺氧期间输注酮咯酸对 FVC 的影响最小(-4 ± 3%;无差异)。在持续 COX 抑制的试验 2 中,FVC 从基线到 SS 缺氧的增加与对照条件相似(27 ± 4%),并且在连续 SS 缺氧期间输注 L-NAME 将 FVC 降低了-36 ± 7%(P < 0.05)。在联合 NOS 和 COX 抑制的试验 3 中,FVC 从基线到 SS 缺氧的增加被消除(3%;与零相比无差异)。我们的综合研究结果表明,(1)在从休息到 SS 缺氧的正常局部血管舒张反应中,NO 和 PGs 都不是必需的;(2)NO 独立于 COX 途径调节缺氧时的血管紧张度,而 PGs 仅在 NOS 抑制时调节缺氧时的血管紧张度;(3)在全身缺氧期间,联合抑制 NO 和 PGs 会消除健康人前臂循环中的局部缺氧性血管舒张(从休息到 SS 缺氧)。

相似文献

引用本文的文献

本文引用的文献

3
Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise.一氧化氮有助于低氧运动时血管舒张增强。
J Physiol. 2010 Jan 15;588(Pt 2):373-85. doi: 10.1113/jphysiol.2009.180489. Epub 2009 Nov 30.
7
Systemic hypoxia and vasoconstrictor responsiveness in exercising human muscle.运动中人体肌肉的全身性缺氧与血管收缩反应性
J Appl Physiol (1985). 2006 Nov;101(5):1343-50. doi: 10.1152/japplphysiol.00487.2006. Epub 2006 Jun 29.
8
Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture).内皮功能障碍:一种多方面的病症(威格斯奖讲座)
Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H985-1002. doi: 10.1152/ajpheart.00292.2006. Epub 2006 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验