Département Génomes et Génétique, Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.
PLoS One. 2010 Jun 15;5(6):e11126. doi: 10.1371/journal.pone.0011126.
Prokaryotes thrive in spite of the vast number and diversity of their viruses. This partly results from the evolution of mechanisms to inactivate or silence the action of exogenous DNA. Among these, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are unique in providing adaptive immunity against elements with high local resemblance to genomes of previously infecting agents. Here, we analyze the CRISPR loci of 51 complete genomes of Escherichia and Salmonella. CRISPR are in two pairs of loci in Escherichia, one single pair in Salmonella, each pair showing a similar turnover rate, repeat sequence and putative linkage to a common set of cas genes. Yet, phylogeny shows that CRISPR and associated cas genes have different evolutionary histories, the latter being frequently exchanged or lost. In our set, one CRISPR pair seems specialized in plasmids often matching genes coding for the replication, conjugation and antirestriction machinery. Strikingly, this pair also matches the cognate cas genes in which case these genes are absent. The unexpectedly high conservation of this anti-CRISPR suggests selection to counteract the invasion of mobile elements containing functional CRISPR/cas systems. There are few spacers in most CRISPR, which rarely match genomes of known phages. Furthermore, we found that strains divergent less than 250 thousand years ago show virtually identical CRISPR. The lack of congruence between cas, CRISPR and the species phylogeny and the slow pace of CRISPR change make CRISPR poor epidemiological markers in enterobacteria. All these observations are at odds with the expectedly abundant and dynamic repertoire of spacers in an immune system aiming at protecting bacteria from phages. Since we observe purifying selection for the maintenance of CRISPR these results suggest that alternative evolutionary roles for CRISPR remain to be uncovered.
原核生物在其大量存在和多样性的病毒中茁壮成长。这部分是由于进化出了使外源 DNA 失活或沉默的机制。在这些机制中,规律成簇间隔短回文重复序列 (CRISPR) 的独特之处在于,它为针对与先前感染因子基因组具有高度局部相似性的元件提供了适应性免疫。在这里,我们分析了 51 个完整的大肠杆菌和沙门氏菌基因组中的 CRISPR 基因座。CRISPR 在大肠杆菌中有两对基因座,沙门氏菌中有一对单一基因座,每个基因座的重复序列和潜在的与一组共同 cas 基因的连接都显示出相似的周转率。然而,系统发育表明,CRISPR 和相关的 cas 基因具有不同的进化历史,后者经常发生交换或丢失。在我们的研究中,一对 CRISPR 似乎专门针对质粒,通常与编码复制、共轭和抗限制机制的基因相匹配。引人注目的是,这对 CRISPR 还与同源的 cas 基因相匹配,而在这种情况下,这些基因缺失。这种抗 CRISPR 的高度保守性表明,选择压力是为了对抗含有功能性 CRISPR/cas 系统的移动元件的入侵。大多数 CRISPR 中的间隔序列很少,而且很少与已知噬菌体的基因组匹配。此外,我们发现,在不到 250 万年分化的菌株中,CRISPR 几乎完全相同。cas、CRISPR 与物种系统发育之间的不一致以及 CRISPR 变化的缓慢步伐使得 CRISPR 成为肠杆菌科中较差的流行病学标志物。所有这些观察结果都与预期的丰富而动态的间隔子库相矛盾,该间隔子库旨在保护细菌免受噬菌体的侵害。由于我们观察到 CRISPR 的维持存在纯化选择,这些结果表明 CRISPR 的替代进化作用仍有待发现。