Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, USA.
Nature. 2010 Jan 28;463(7280):568-71. doi: 10.1038/nature08703. Epub 2010 Jan 13.
All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway. CRISPR loci are present in approximately 40% and approximately 90% of sequenced bacterial and archaeal genomes, respectively, and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes that collectively encode >40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences. CrRNA spacers are thought to identify targets by direct Watson-Crick pairing with invasive 'protospacer' DNA, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target, but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, indicating that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways.
所有的免疫系统都必须区分自身和非自身,以排斥入侵者而不引起自身免疫。成簇、规律间隔、短回文重复序列 (CRISPR) 位点通过遗传干扰途径保护细菌和古菌免受噬菌体和质粒 DNA 的入侵。CRISPR 位点分别存在于大约 40%和大约 90%的已测序细菌和古菌基因组中,并且进化迅速,通过获取新的间隔序列来适应高度动态的病毒种群。免疫需要入侵 DNA 与位于 CRISPR 重复之间的间隔序列之间的序列匹配。每个簇在遗传上与一组 cas (CRISPR 相关) 基因相关联,这些基因共同编码 40 多种参与适应和干扰的蛋白质家族。CRISPR 位点编码小的 CRISPR RNA (crRNA),其包含侧翼带有部分重复序列的完整间隔序列。crRNA 间隔序列被认为通过与入侵的“原间隔体”DNA 直接沃森-克里克配对来识别靶标,但它们如何避免靶向编码 CRISPR 位点自身的间隔体 DNA 尚不清楚。在这里,我们定义了 CRISPR 自我/非自我区分的机制。在表皮葡萄球菌中,位于间隔序列之外的特定位置的靶标/crRNA 错配允许外源 DNA 进行干扰,而 crRNA 和 CRISPR DNA 重复之间的扩展配对则防止自身免疫。因此,这个 CRISPR 系统不仅利用 crRNA 的碱基配对潜力来指定靶标,而且还使细菌染色体免受干扰。在间隔序列之外的差异互补是所有 CRISPR 系统的内置特征,表明这种机制是所有免疫途径所面临的自我/非自我困境的广泛适用解决方案。