Niemi Jarad, West Mike
Department of Statistical Science, Duke University, Durham, NC 27708-0251.
J Comput Graph Stat. 2010 Jun 1;19(2):260-280. doi: 10.1198/jcgs.2010.08117.
We describe a strategy for Markov chain Monte Carlo analysis of non-linear, non-Gaussian state-space models involving batch analysis for inference on dynamic, latent state variables and fixed model parameters. The key innovation is a Metropolis-Hastings method for the time series of state variables based on sequential approximation of filtering and smoothing densities using normal mixtures. These mixtures are propagated through the non-linearities using an accurate, local mixture approximation method, and we use a regenerating procedure to deal with potential degeneracy of mixture components. This provides accurate, direct approximations to sequential filtering and retrospective smoothing distributions, and hence a useful construction of global Metropolis proposal distributions for simulation of posteriors for the set of states. This analysis is embedded within a Gibbs sampler to include uncertain fixed parameters. We give an example motivated by an application in systems biology. Supplemental materials provide an example based on a stochastic volatility model as well as MATLAB code.
我们描述了一种用于非线性、非高斯状态空间模型的马尔可夫链蒙特卡罗分析策略,该模型涉及批量分析,用于推断动态、潜在状态变量和固定模型参数。关键创新在于一种基于使用正态混合对滤波和平滑密度进行顺序近似的状态变量时间序列的Metropolis-Hastings方法。这些混合通过使用精确的局部混合近似方法在非线性中传播,并且我们使用一种再生过程来处理混合成分的潜在退化。这为顺序滤波和回顾性平滑分布提供了准确、直接的近似,从而为状态集的后验模拟构建了有用的全局Metropolis提议分布。该分析嵌入在一个吉布斯采样器中,以纳入不确定的固定参数。我们给出了一个受系统生物学应用启发的示例。补充材料提供了一个基于随机波动率模型的示例以及MATLAB代码。