文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心脏转录组的林姬鼠(Myodes glareolus):探索代谢率进化变化的奥秘。

Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate.

机构信息

Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland.

出版信息

BMC Genomics. 2010 Jun 21;11:390. doi: 10.1186/1471-2164-11-390.


DOI:10.1186/1471-2164-11-390
PMID:20565972
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2996923/
Abstract

BACKGROUND: Understanding the genetic basis of adaptive changes has been a major goal of evolutionary biology. In complex organisms without sequenced genomes, de novo transcriptome assembly using a longer read sequencing technology followed by expression profiling using short reads is likely to provide comprehensive identification of adaptive variation at the expression level and sequence polymorphisms in coding regions. We performed sequencing and de novo assembly of the bank vole heart transcriptome in lines selected for high metabolism and unselected controls. RESULTS: A single 454 Titanium run produced over million reads, which were assembled into 63,581 contigs. Searches against the SwissProt protein database and the ENSEMBL collection of mouse transcripts detected similarity to 11,181 and 14,051 genes, respectively. As judged by the representation of genes from the heart-related Gene Ontology categories and UniGenes detected in the mouse heart, our detection of the genes expressed in the heart was nearly complete (> 95% and almost 90% respectively). On average, 38.7% of the transcript length was covered by our sequences, with notably higher (45.0%) coverage of coding regions than of untranslated regions (24.5% of 5' and 32.7% of 3'UTRs). Lower sequence conservation between mouse and bank vole in untranslated regions was found to be partially responsible for poorer UTR representation. Our data might suggest a widespread transcription from noncoding genomic regions, a finding not reported in previous studies regarding transcriptomes in non-model organisms. We also identified over 19 thousand putative single nucleotide polymorphisms (SNPs). A much higher fraction of the SNPs than expected by chance exhibited variant frequency differences between selection regimes. CONCLUSION: Longer reads and higher sequence yield per run provided by the 454 Titanium technology in comparison to earlier generations of pyrosequencing proved beneficial for the quality of assembly. An almost full representation of genes known to be expressed in the mouse heart was identified. Usage of the extensive genomic resources available for the house mouse, a moderately (20-40 mln years) divergent relative of the voles, enabled a comprehensive assessment of the transcript completeness. Transcript sequences generated in the present study allowed the identification of candidate SNPs associated with divergence of selection lines and constitute a valuable permanent resource forming a foundation for RNAseq experiments aiming at detection of adaptive changes both at the level of gene expression and sequence variants, that would facilitate studies of the genetic basis of evolutionary divergence.

摘要

背景:理解适应性变化的遗传基础一直是进化生物学的主要目标。在没有测序基因组的复杂生物中,使用较长读测序技术进行从头转录组组装,然后使用短读进行表达谱分析,可能会全面识别表达水平的适应性变异和编码区的序列多态性。我们对代谢水平高的选择线和未选择的对照线的田鼠心脏进行了测序和从头组装。

结果:单个 454 Titanium 运行产生了超过百万的读长,这些读长被组装成 63581 个 contigs。与 SwissProt 蛋白质数据库和 ENSEMBL 收集的小鼠转录本进行搜索,分别检测到与 11181 和 14051 个基因相似。根据心脏相关基因本体论类别和在小鼠心脏中检测到的 UniGenes 代表的基因判断,我们检测到心脏表达的基因几乎是完整的(分别超过 95%和近 90%)。我们的序列平均覆盖了 38.7%的转录本长度,编码区的覆盖度明显高于非翻译区(5'区的 45.0%和 3'UTR 的 32.7%)。在非翻译区中,鼠标和田鼠之间的序列保守性较低,这部分导致了 UTR 表示较差。我们的数据可能表明广泛的转录来自非编码基因组区域,这是以前关于非模型生物转录组的研究中没有报道的发现。我们还鉴定了超过 19000 个可能的单核苷酸多态性(SNP)。与早期焦磷酸测序相比,454 Titanium 技术提供的更长的读长和每个运行更高的序列产量证明对组装质量有益。鉴定出几乎完整的已知在小鼠心脏中表达的基因。利用家鼠(与田鼠的亲缘关系中度(20-40 百万年)分化)可获得的广泛基因组资源,全面评估了转录本的完整性。本研究中生成的转录本序列允许鉴定与选择线分歧相关的候选 SNP,并构成一个有价值的永久资源,为旨在检测基因表达水平和序列变异的适应性变化的 RNAseq 实验奠定基础,这将有助于研究进化分歧的遗传基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/3403a7673ed8/1471-2164-11-390-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/cfe5fbad56b7/1471-2164-11-390-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/5ff279cdd9d1/1471-2164-11-390-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/d8a89af88c3b/1471-2164-11-390-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/155b6382f6c7/1471-2164-11-390-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/db17efe9b6d0/1471-2164-11-390-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/44c93cfbd59c/1471-2164-11-390-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/0bcb5599624f/1471-2164-11-390-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/3403a7673ed8/1471-2164-11-390-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/cfe5fbad56b7/1471-2164-11-390-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/5ff279cdd9d1/1471-2164-11-390-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/d8a89af88c3b/1471-2164-11-390-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/155b6382f6c7/1471-2164-11-390-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/db17efe9b6d0/1471-2164-11-390-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/44c93cfbd59c/1471-2164-11-390-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/0bcb5599624f/1471-2164-11-390-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca56/2996923/3403a7673ed8/1471-2164-11-390-8.jpg

相似文献

[1]
Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate.

BMC Genomics. 2010-6-21

[2]
Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression.

Mol Biol Evol. 2015-3-3

[3]
A garter snake transcriptome: pyrosequencing, de novo assembly, and sex-specific differences.

BMC Genomics. 2010-12-7

[4]
Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome.

BMC Genomics. 2011-4-20

[5]
De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus).

Heredity (Edinb). 2017-4

[6]
A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.

BMC Genomics. 2017-5-22

[7]
Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq.

BMC Genomics. 2015-10-26

[8]
Challenges and advances for transcriptome assembly in non-model species.

PLoS One. 2017-9-20

[9]
Characterization of the transcriptome of an ecologically important avian species, the Vinous-throated Parrotbill Paradoxornis webbianus bulomachus (Paradoxornithidae; Aves).

BMC Genomics. 2012-4-24

[10]
De novo transcriptome assembly and polymorphism detection in the flowering plant Silene vulgaris (Caryophyllaceae).

Mol Ecol Resour. 2011-10-17

引用本文的文献

[1]
Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy.

BMC Genomics. 2017-1-30

[2]
Proteome Dynamics: Tissue Variation in the Kinetics of Proteostasis in Intact Animals.

Mol Cell Proteomics. 2016-4

[3]
Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment.

Proc Biol Sci. 2015-5-7

[4]
Characterization of the heart transcriptome of the white shark (Carcharodon carcharias).

BMC Genomics. 2013-10-11

[5]
Signatures of rapid evolution in urban and rural transcriptomes of white-footed mice (Peromyscus leucopus) in the New York metropolitan area.

PLoS One. 2013-8-28

[6]
Cytochrome P450 2B diversity and dietary novelty in the herbivorous, desert woodrat (Neotoma lepida).

PLoS One. 2012-8-22

[7]
Determinants of intra-specific variation in basal metabolic rate.

J Comp Physiol B. 2012-7-31

[8]
Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes).

BMC Genomics. 2011-10-3

[9]
Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles.

Evodevo. 2011-9-26

[10]
A multi-organ transcriptome resource for the Burmese Python (Python molurus bivittatus).

BMC Res Notes. 2011-8-25

本文引用的文献

[1]
msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design.

Mol Ecol Resour. 2008-1

[2]
Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus.

Mol Ecol. 2010-3

[3]
Mining transcriptome sequences towards identifying adaptive single nucleotide polymorphisms in lake whitefish species pairs (Coregonus spp. Salmonidae).

Mol Ecol. 2010-3

[4]
Calling SNPs without a reference sequence.

BMC Bioinformatics. 2010-3-15

[5]
Development of genomic resources for the prairie vole (Microtus ochrogaster): construction of a BAC library and vole-mouse comparative cytogenetic map.

BMC Genomics. 2010-1-28

[6]
Sequencing technologies - the next generation.

Nat Rev Genet. 2009-12-8

[7]
Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence.

Insect Mol Biol. 2009-11-10

[8]
The challenges of sequencing by synthesis.

Nat Biotechnol. 2009-11-6

[9]
Genome evolution and adaptation in a long-term experiment with Escherichia coli.

Nature. 2009-10-29

[10]
Characterizing natural variation using next-generation sequencing technologies.

Trends Genet. 2009-10-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索