Division of Pediatric Pulmonology and Cystic Fibrosis Center, Department of Pediatrics III, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany.
Cystic Fibrosis/Pulmonary Research and Treatment Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7248, Switzerland.
J Biol Chem. 2010 Aug 27;285(35):26945-26955. doi: 10.1074/jbc.M110.151803. Epub 2010 Jun 21.
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na(+) channel beta-subunit (betaENaC-Tg) suggest that raised airway Na(+) transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function betaENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, betaENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na(+) transport measured in Ussing chambers ("flooded" conditions) was raised in both Liddle and betaENaC-Tg mice. Because enhanced Na(+) transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic "thin film" conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na(+) absorption were intact in Liddle but defective in betaENaC-Tg mice. We conclude that the capacity to regulate Na(+) transport and ASL volume, not absolute Na(+) transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.
囊性纤维化患者和过表达上皮钠通道β亚基(βENaC-Tg)的小鼠研究表明,气道钠转运增加和气道表面液体(ASL)耗竭是囊性纤维化肺部疾病发病机制的核心。然而,具有 Liddle 获得性功能βENaC 突变的患者或小鼠表现出高血压但没有肺部疾病。为了研究这一明显的悖论,我们比较了 Liddle 与 CFTR 缺失、βENaC-Tg 和双突变小鼠的气道表型(鼻与气管)。在小鼠鼻上皮中,该区域在功能上模拟人类气道,高水平的 CFTR 表达抑制了 Liddle 上皮钠通道(ENaC)的功能亢进。相反,在小鼠气管中,低水平的 CFTR 未能抑制 Liddle ENaC 功能亢进。实际上,在 Ussing 室中测量的钠转运(“淹没”条件)在 Liddle 和βENaC-Tg 小鼠中均升高。由于这些突变小鼠中的增强的钠转运与肺部疾病不相关,因此在气管培养物中进行了生理“薄膜”条件下和体内的测量。在 Liddle 中,ASL 体积和 ENaC 介导的钠吸收的调节是完整的,但在βENaC-Tg 小鼠中则存在缺陷。我们得出的结论是,调节钠转运和 ASL 体积的能力,而不是 Ussing 室中绝对的钠转运速率,是保护气道免受脱水性肺疾病的关键生理功能。