Suppr超能文献

绵羊移动网络与传染病传播。

Sheep movement networks and the transmission of infectious diseases.

机构信息

Centre for Infectious Diseases, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.

出版信息

PLoS One. 2010 Jun 17;5(6):e11185. doi: 10.1371/journal.pone.0011185.

Abstract

BACKGROUND AND METHODOLOGY

Various approaches have been used to investigate how properties of farm contact networks impact on the transmission of infectious diseases. The potential for transmission of an infection through a contact network can be evaluated in terms of the basic reproduction number, R(0). The magnitude of R(0) is related to the mean contact rate of a host, in this case a farm, and is further influenced by heterogeneities in contact rates of individual hosts. The latter can be evaluated as the second order moments of the contact matrix (variances in contact rates, and co-variance between contacts to and from individual hosts). Here we calculate these quantities for the farms in a country-wide livestock network: >15,000 Scottish sheep farms in each of 4 years from July 2003 to June 2007. The analysis is relevant to endemic and chronic infections with prolonged periods of infectivity of affected animals, and uses different weightings of contacts to address disease scenarios of low, intermediate and high animal-level prevalence.

PRINCIPAL FINDINGS AND CONCLUSIONS

Analysis of networks of Scottish farms via sheep movements from July 2003 to June 2007 suggests that heterogeneities in movement patterns (variances and covariances of rates of movement on and off the farms) make a substantial contribution to the potential for the transmission of infectious diseases, quantified as R(0), within the farm population. A small percentage of farms (<20%) contribute the bulk of the transmission potential (>80%) and these farms could be efficiently targeted by interventions aimed at reducing spread of diseases via animal movement.

摘要

背景与方法

为了研究农场接触网络的特性如何影响传染病的传播,人们已经提出了各种方法。可以根据基本繁殖数 R(0)来评估通过接触网络传播感染的可能性。R(0)的大小与宿主(在这种情况下是农场)的平均接触率有关,并且进一步受到个体宿主的接触率异质性的影响。后者可以通过接触矩阵的二阶矩来评估(接触率的方差以及个体宿主的接触到和来自接触的协方差)。在这里,我们计算了 2003 年 7 月至 2007 年 6 月四年间全国牲畜网络中农场的这些数量:苏格兰的 15000 多个绵羊农场。该分析与具有较长感染期的地方性和慢性感染有关,并且使用不同的接触权重来解决低、中和高动物水平流行率的疾病情况。

主要发现和结论

通过对 2003 年 7 月至 2007 年 6 月期间的绵羊运动进行苏格兰农场网络分析表明,运动模式的异质性(农场内外的运动率的方差和协方差)对农场内传染病传播的潜力(量化为 R(0))有很大的贡献。一小部分农场(<20%)贡献了大部分传播潜力(>80%),这些农场可以通过旨在减少动物运动传播疾病的干预措施有效地针对这些农场。

相似文献

1
Sheep movement networks and the transmission of infectious diseases.
PLoS One. 2010 Jun 17;5(6):e11185. doi: 10.1371/journal.pone.0011185.
2
Potential for transmission of infections in networks of cattle farms.
Epidemics. 2010 Sep;2(3):116-122. doi: 10.1016/j.epidem.2010.05.004. Epub 2010 Jun 19.
3
Manipulation of contact network structure and the impact on foot-and-mouth disease transmission.
Prev Vet Med. 2018 Sep 1;157:8-18. doi: 10.1016/j.prevetmed.2018.05.006. Epub 2018 May 4.
4
Contrasting animal movement and spatial connectivity networks in shaping transmission pathways of a genetically diverse virus.
Prev Vet Med. 2020 May;178:104977. doi: 10.1016/j.prevetmed.2020.104977. Epub 2020 Mar 25.
7
Multilevel model for airborne transmission of foot-and-mouth disease applied to Swedish livestock.
PLoS One. 2020 May 26;15(5):e0232489. doi: 10.1371/journal.pone.0232489. eCollection 2020.
8
Farm animal networks: unraveling the contact structure of the British sheep population.
Prev Vet Med. 2005 Apr;68(1):3-17. doi: 10.1016/j.prevetmed.2005.01.003.
9
Animal movement in a pastoralist population in the Maasai Mara Ecosystem in Kenya and implications for pathogen spread and control.
Prev Vet Med. 2021 Mar;188:105259. doi: 10.1016/j.prevetmed.2021.105259. Epub 2021 Jan 5.
10
The impact of changing farm structure on foot-and-mouth disease spread and control: A simulation study.
Transbound Emerg Dis. 2020 Jul;67(4):1633-1644. doi: 10.1111/tbed.13500. Epub 2020 Feb 13.

引用本文的文献

2
Description of the Cattle and Small Ruminants Trade Network in Senegal and Implication for the Surveillance of Animal Diseases.
Transbound Emerg Dis. 2023 Oct 12;2023:1880493. doi: 10.1155/2023/1880493. eCollection 2023.
3
Animal Movements and FMDV Transmission during the High-Risk Period of the 2001 FMD Epidemic in Uruguay.
Transbound Emerg Dis. 2023 Nov 11;2023:8883502. doi: 10.1155/2023/8883502. eCollection 2023.
4
A study of sheep scab in Northern Ireland including detection and identifying barriers to control.
Vet Rec Open. 2024 Dec 23;11(2):e70003. doi: 10.1002/vro2.70003. eCollection 2024 Dec.
5
Molecular Detection of Tick-Borne Pathogens in Kumasi: With a First Report of Zoonotic Pathogens in Abattoir Workers.
Biomed Res Int. 2024 Jul 14;2024:4848451. doi: 10.1155/2024/4848451. eCollection 2024.
6
7
8
Capturing spatial dependence of COVID-19 case counts with cellphone mobility data.
Spat Stat. 2022 Jun;49:100540. doi: 10.1016/j.spasta.2021.100540. Epub 2021 Sep 28.
9
The role of social structure and dynamics in the maintenance of endemic disease.
Behav Ecol Sociobiol. 2021;75(8):122. doi: 10.1007/s00265-021-03055-8. Epub 2021 Aug 18.
10
Sheep scab transmission: a spatially explicit dynamic metapopulation model.
Vet Res. 2021 Apr 12;52(1):54. doi: 10.1186/s13567-021-00924-y.

本文引用的文献

1
Estimating animal movement contacts between holdings of different production types.
Prev Vet Med. 2010 Jun 1;95(1-2):23-31. doi: 10.1016/j.prevetmed.2010.03.002. Epub 2010 Mar 30.
2
Classification of worldwide bovine tuberculosis risk factors in cattle: a stratified approach.
Vet Res. 2009 Sep-Oct;40(5):50. doi: 10.1051/vetres/2009033. Epub 2009 Jun 6.
3
Spread of infectious disease through clustered populations.
J R Soc Interface. 2009 Dec 6;6(41):1121-34. doi: 10.1098/rsif.2008.0524. Epub 2009 Mar 4.
4
Representing the UK's cattle herd as static and dynamic networks.
Proc Biol Sci. 2009 Feb 7;276(1656):469-76. doi: 10.1098/rspb.2008.1009.
5
Type and frequency of contacts between Belgian pig herds.
Prev Vet Med. 2009 Jan 1;88(1):57-66. doi: 10.1016/j.prevetmed.2008.08.002. Epub 2008 Oct 5.
6
Estimates for local and movement-based transmission of bovine tuberculosis in British cattle.
Proc Biol Sci. 2008 May 7;275(1638):1001-5. doi: 10.1098/rspb.2007.1601.
7
Demographic risk factors for classical and atypical scrapie in Great Britain.
J Gen Virol. 2007 Dec;88(Pt 12):3486-3492. doi: 10.1099/vir.0.83225-0.
8
Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing.
J Theor Biol. 2007 Dec 21;249(4):706-22. doi: 10.1016/j.jtbi.2007.09.011. Epub 2007 Sep 15.
10
Recent network evolution increases the potential for large epidemics in the British cattle population.
J R Soc Interface. 2007 Aug 22;4(15):669-74. doi: 10.1098/rsif.2007.0214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验