Suppr超能文献

利用手机移动数据捕捉新冠病毒病例数的空间依赖性。

Capturing spatial dependence of COVID-19 case counts with cellphone mobility data.

作者信息

Slater Justin J, Brown Patrick E, Rosenthal Jeffrey S, Mateu Jorge

机构信息

Department of Statistical Sciences, University of Toronto, Canada.

Centre for Global Health Research, St. Michael's Hospital, Canada.

出版信息

Spat Stat. 2022 Jun;49:100540. doi: 10.1016/j.spasta.2021.100540. Epub 2021 Sep 28.

Abstract

Spatial dependence is usually introduced into spatial models using some measure of physical proximity. When analysing COVID-19 case counts, this makes sense as regions that are close together are more likely to have more people moving between them, spreading the disease. However, using the actual number of trips between each region may explain COVID-19 case counts better than physical proximity. In this paper, we investigate the efficacy of using telecommunications-derived mobility data to induce spatial dependence in spatial models applied to two Spanish communities' COVID-19 case counts. We do this by extending Besag York Mollié (BYM) models to include both a physical adjacency effect, alongside a mobility effect. The mobility effect is given a Gaussian Markov random field prior, with the number of trips between regions as edge weights. We leverage modern parametrizations of BYM models to conclude that the number of people moving between regions better explains variation in COVID-19 case counts than physical proximity data. We suggest that this data should be used in conjunction with physical proximity data when developing spatial models for COVID-19 case counts.

摘要

空间依赖性通常通过某种物理邻近性度量引入到空间模型中。在分析新冠疫情病例数时,这是合理的,因为距离较近的地区之间更有可能有更多人员往来,从而传播疾病。然而,使用各地区之间的实际出行次数可能比物理邻近性更能解释新冠疫情病例数。在本文中,我们研究了利用电信衍生的移动性数据在应用于两个西班牙社区新冠疫情病例数的空间模型中引入空间依赖性的效果。我们通过扩展贝萨格-约克-莫利(BYM)模型来实现这一点,使其既包括物理邻接效应,又包括移动性效应。移动性效应采用高斯马尔可夫随机场先验分布,各地区之间的出行次数作为边权重。我们利用BYM模型的现代参数化方法得出结论,地区之间的人员流动数量比物理邻近性数据更能解释新冠疫情病例数的变化。我们建议,在为新冠疫情病例数建立空间模型时,应将这些数据与物理邻近性数据结合使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d91/8479517/2e9472eb7b87/gr1_lrg.jpg

相似文献

1
Capturing spatial dependence of COVID-19 case counts with cellphone mobility data.
Spat Stat. 2022 Jun;49:100540. doi: 10.1016/j.spasta.2021.100540. Epub 2021 Sep 28.
2
Revisiting Gaussian Markov random fields and Bayesian disease mapping.
Stat Methods Med Res. 2023 Jan;32(1):207-225. doi: 10.1177/09622802221129040. Epub 2022 Nov 1.
3
Bayesian hierarchical spatial models: Implementing the Besag York Mollié model in stan.
Spat Spatiotemporal Epidemiol. 2019 Nov;31:100301. doi: 10.1016/j.sste.2019.100301. Epub 2019 Aug 12.
4
Bayesian hierarchical modelling of noisy spatial rates on a modestly large and discontinuous irregular lattice.
Stat Methods Med Res. 2014 Dec;23(6):552-71. doi: 10.1177/0962280214527386. Epub 2014 Mar 26.
5
Evaluating the informativeness of the Besag-York-Mollié CAR model.
Spat Spatiotemporal Epidemiol. 2021 Jun;37:100420. doi: 10.1016/j.sste.2021.100420. Epub 2021 Mar 27.
6
Discrete versus continuous domain models for disease mapping.
Spat Spatiotemporal Epidemiol. 2020 Feb;32:100319. doi: 10.1016/j.sste.2019.100319. Epub 2019 Dec 11.
7
A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping.
Stat Methods Med Res. 2016 Aug;25(4):1166-84. doi: 10.1177/0962280216660407.
8
Evaluating the impact of a small number of areas on spatial estimation.
Int J Health Geogr. 2020 Sep 25;19(1):39. doi: 10.1186/s12942-020-00233-1.
9
A spatial partial differential equation approach to addressing unit misalignments in Bayesian poisson space-time models.
Spat Spatiotemporal Epidemiol. 2020 Jun;33:100337. doi: 10.1016/j.sste.2020.100337. Epub 2020 Mar 6.
10
Disease Mapping for Stomach Cancer in Libya Based on Besag– York– Mollié (BYM) Model.
Asian Pac J Cancer Prev. 2017 Jun 25;18(6):1479-1484. doi: 10.22034/APJCP.2017.18.6.1479.

引用本文的文献

2
Spatio-temporal model to investigate COVID-19 spread accounting for the mobility amongst municipalities.
Spat Spatiotemporal Epidemiol. 2023 Jun;45:100568. doi: 10.1016/j.sste.2023.100568. Epub 2023 Feb 8.
3
Bayesian disease mapping: Past, present, and future.
Spat Stat. 2022 Aug;50:100593. doi: 10.1016/j.spasta.2022.100593. Epub 2022 Jan 19.

本文引用的文献

3
Spatial Risk Factors for Pillar 1 COVID-19 Excess Cases and Mortality in Rural Eastern England, UK.
Risk Anal. 2022 Jul;42(7):1571-1584. doi: 10.1111/risa.13835. Epub 2021 Oct 2.
4
Monitoring the COVID-19 epidemic with nationwide telecommunication data.
Proc Natl Acad Sci U S A. 2021 Jun 29;118(26). doi: 10.1073/pnas.2100664118.
5
6
Mobility network models of COVID-19 explain inequities and inform reopening.
Nature. 2021 Jan;589(7840):82-87. doi: 10.1038/s41586-020-2923-3. Epub 2020 Nov 10.
8
Population-weighted exposure to air pollution and COVID-19 incidence in Germany.
Spat Stat. 2021 Mar;41:100480. doi: 10.1016/j.spasta.2020.100480. Epub 2020 Nov 3.
9
Modelling and predicting the spatio-temporal spread of cOVID-19 in Italy.
BMC Infect Dis. 2020 Sep 23;20(1):700. doi: 10.1186/s12879-020-05415-7.
10
Human mobility and COVID-19 initial dynamics.
Nonlinear Dyn. 2020;101(3):1901-1919. doi: 10.1007/s11071-020-05854-6. Epub 2020 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验