Suppr超能文献

贝叶斯在线学习变点问题中的风险率。

Bayesian online learning of the hazard rate in change-point problems.

机构信息

Department of Psychology, Princeton University, Princeton, NJ 08540, USA.

出版信息

Neural Comput. 2010 Sep 1;22(9):2452-76. doi: 10.1162/NECO_a_00007.

Abstract

Change-point models are generative models of time-varying data in which the underlying generative parameters undergo discontinuous changes at different points in time known as change points. Change-points often represent important events in the underlying processes, like a change in brain state reflected in EEG data or a change in the value of a company reflected in its stock price. However, change-points can be difficult to identify in noisy data streams. Previous attempts to identify change-points online using Bayesian inference relied on specifying in advance the rate at which they occur, called the hazard rate (h). This approach leads to predictions that can depend strongly on the choice of h and is unable to deal optimally with systems in which h is not constant in time. In this letter, we overcome these limitations by developing a hierarchical extension to earlier models. This approach allows h itself to be inferred from the data, which in turn helps to identify when change-points occur. We show that our approach can effectively identify change-points in both toy and real data sets with complex hazard rates and how it can be used as an ideal-observer model for human and animal behavior when faced with rapidly changing inputs.

摘要

变点模型是一种随时间变化的数据生成模型,其中潜在的生成参数在称为变点的不同时间点经历不连续的变化。变点通常代表潜在过程中的重要事件,例如反映在脑电图数据中的大脑状态变化,或反映在股票价格中的公司价值变化。然而,在嘈杂的数据流中,变点可能难以识别。以前使用贝叶斯推断在线识别变点的尝试依赖于提前指定它们发生的速率,称为危险率 (h)。这种方法导致的预测可能强烈依赖于 h 的选择,并且无法针对 h 随时间变化的系统进行最佳处理。在这封信中,我们通过为早期模型开发层次扩展来克服这些限制。这种方法允许从数据中推断 h 本身,这反过来有助于确定何时发生变点。我们表明,我们的方法可以有效地识别具有复杂危险率的玩具和真实数据集以及如何在面对快速变化的输入时将其用作人类和动物行为的理想观察者模型。

相似文献

5
The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.层级预测对知觉决策的神经关联。
J Neurosci. 2018 May 23;38(21):5008-5021. doi: 10.1523/JNEUROSCI.2901-17.2018. Epub 2018 Apr 30.
6
Bayesian multitask classification with Gaussian process priors.具有高斯过程先验的贝叶斯多任务分类
IEEE Trans Neural Netw. 2011 Dec;22(12):2011-21. doi: 10.1109/TNN.2011.2168568. Epub 2011 Oct 10.

引用本文的文献

1
Discounting Future Reward in an Uncertain World.在一个不确定的世界中对未来奖励进行贴现。
Decision (Wash D C ). 2024 Apr;11(2):255-282. doi: 10.1037/dec0000219. Epub 2023 Jun 29.
3
Understanding learning through uncertainty and bias.通过不确定性和偏差来理解学习。
Commun Psychol. 2025 Feb 13;3(1):24. doi: 10.1038/s44271-025-00203-y.
4
Thalamocortical architectures for flexible cognition and efficient learning.丘脑皮质结构用于灵活的认知和高效的学习。
Trends Cogn Sci. 2024 Aug;28(8):739-756. doi: 10.1016/j.tics.2024.05.006. Epub 2024 Jun 17.
7
Adaptive Learning through Temporal Dynamics of State Representation.通过状态表示的时间动态进行适应性学习。
J Neurosci. 2022 Mar 23;42(12):2524-2538. doi: 10.1523/JNEUROSCI.0387-21.2022. Epub 2022 Feb 1.

本文引用的文献

1
Detecting and predicting changes.检测和预测变化。
Cogn Psychol. 2009 Feb;58(1):49-67. doi: 10.1016/j.cogpsych.2008.09.002. Epub 2008 Nov 1.
3
Learning the value of information in an uncertain world.在一个不确定的世界中了解信息的价值。
Nat Neurosci. 2007 Sep;10(9):1214-21. doi: 10.1038/nn1954. Epub 2007 Aug 5.
4
Prefrontal neural correlates of memory for sequences.序列记忆的前额叶神经关联
J Neurosci. 2007 Feb 28;27(9):2204-11. doi: 10.1523/JNEUROSCI.4483-06.2007.
7
Uncertainty, neuromodulation, and attention.不确定性、神经调节与注意力。
Neuron. 2005 May 19;46(4):681-92. doi: 10.1016/j.neuron.2005.04.026.
9
Bayesian partitioning for estimating disease risk.用于估计疾病风险的贝叶斯划分
Biometrics. 2001 Mar;57(1):143-9. doi: 10.1111/j.0006-341x.2001.00143.x.
10
Bayesian inference on biopolymer models.生物聚合物模型的贝叶斯推断。
Bioinformatics. 1999 Jan;15(1):38-52. doi: 10.1093/bioinformatics/15.1.38.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验