Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12511-6. doi: 10.1073/pnas.1006283107. Epub 2010 Jun 22.
Biological processes such as circadian rhythms, cell division, metabolism, and development occur as ordered sequences of events. The synchronization of these coordinated events is essential for proper cell function, and hence the determination of critical time points in biological processes is an important component of all biological investigations. In particular, such critical time points establish logical ordering constraints on subprocesses, impose prerequisites on temporal regulation and spatial compartmentalization, and situate dynamic reorganization of functional elements in preparation for subsequent stages. Thus, building temporal phenomenological representations of biological processes from genome-wide datasets is relevant in formulating biological hypotheses on: how processes are mechanistically regulated; how the regulations vary on an evolutionary scale, and how their inadvertent disregulation leads to a diseased state or fatality. This paper presents a general framework (GOALIE) to reconstruct temporal models of cellular processes from time-course gene expression data. We mathematically formulate the problem as one of optimally segmenting datasets into a succession of "informative" windows such that time points within a window expose concerted clusters of gene action whereas time points straddling window boundaries constitute points of significant restructuring. We illustrate here how GOALIE successfully brings out the interplay between multiple yeast processes, inferred from combined experimental datasets for the cell cycle and the metabolic cycle.
生物过程,如昼夜节律、细胞分裂、代谢和发育,都是按照有序的事件序列发生的。这些协调事件的同步对于正常的细胞功能至关重要,因此确定生物过程中的关键时间点是所有生物研究的重要组成部分。特别是,这些关键时间点为子过程建立了逻辑排序约束,对时间调节和空间分隔施加了前提条件,并为随后的阶段准备了功能元件的动态重组。因此,从全基因组数据集构建生物过程的时间现象学表示形式,对于制定关于以下方面的生物学假设是相关的:过程是如何在机制上受到调节的;这些调节在进化尺度上是如何变化的,以及它们的意外失调如何导致疾病状态或致命性。本文提出了一个从时间表达数据重建细胞过程时间模型的通用框架(GOALIE)。我们从数学上把这个问题表述为最优地将数据集分割成一系列“信息丰富”的窗口,使得一个窗口内的时间点揭示基因作用的协同簇,而跨越窗口边界的时间点则构成显著重构的点。我们在这里说明 GOALIE 如何成功地揭示了从细胞周期和代谢周期的组合实验数据推断出的多个酵母过程之间的相互作用。