Sahoo Debashis, Dill David L, Tibshirani Rob, Plevritis Sylvia K
Department of Electrical Engineering, Stanford University, USA.
Nucleic Acids Res. 2007;35(11):3705-12. doi: 10.1093/nar/gkm284. Epub 2007 May 21.
This article presents a new method for analyzing microarray time courses by identifying genes that undergo abrupt transitions in expression level, and the time at which the transitions occur. The algorithm matches the sequence of expression levels for each gene against temporal patterns having one or two transitions between two expression levels. The algorithm reports a P-value for the matching pattern of each gene, and a global false discovery rate can also be computed. After matching, genes can be sorted by the direction and time of transitions. Genes can be partitioned into sets based on the direction and time of change for further analysis, such as comparison with Gene Ontology annotations or binding site motifs. The method is evaluated on simulated and actual time-course data. On microarray data for budding yeast, it is shown that the groups of genes that change in similar ways and at similar times have significant and relevant Gene Ontology annotations.
本文提出了一种分析微阵列时间进程的新方法,该方法通过识别表达水平发生突然转变的基因以及转变发生的时间来实现。该算法将每个基因的表达水平序列与在两个表达水平之间有一个或两个转变的时间模式进行匹配。该算法会报告每个基因匹配模式的P值,同时也可以计算全局错误发现率。匹配之后,基因可以按照转变的方向和时间进行排序。基于变化的方向和时间,基因可以被划分成不同的集合,以便进行进一步分析,例如与基因本体注释或结合位点基序进行比较。该方法在模拟和实际时间进程数据上进行了评估。在芽殖酵母的微阵列数据上,结果表明,以相似方式且在相似时间发生变化的基因群体具有显著且相关的基因本体注释。