Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
Science. 2010 Jun 25;328(5986):1662-8. doi: 10.1126/science.1188302.
Here, we describe a biomimetic microsystem that reconstitutes the critical functional alveolar-capillary interface of the human lung. This bioinspired microdevice reproduces complex integrated organ-level responses to bacteria and inflammatory cytokines introduced into the alveolar space. In nanotoxicology studies, this lung mimic revealed that cyclic mechanical strain accentuates toxic and inflammatory responses of the lung to silica nanoparticles. Mechanical strain also enhances epithelial and endothelial uptake of nanoparticulates and stimulates their transport into the underlying microvascular channel. Similar effects of physiological breathing on nanoparticle absorption are observed in whole mouse lung. Mechanically active "organ-on-a-chip" microdevices that reconstitute tissue-tissue interfaces critical to organ function may therefore expand the capabilities of cell culture models and provide low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.
在这里,我们描述了一个仿生微系统,它重建了人类肺部关键的肺泡-毛细血管功能界面。这个仿生微器件再现了复杂的综合器官水平反应,对细菌和炎症细胞因子进入肺泡空间做出反应。在纳米毒理学研究中,这种肺模拟表明,循环机械应变加剧了肺对二氧化硅纳米颗粒的毒性和炎症反应。机械应变还增强了上皮细胞和内皮细胞对纳米颗粒的摄取,并刺激它们进入下面的微血管通道。在整个小鼠肺中也观察到生理呼吸对纳米颗粒吸收的类似影响。因此,能够重建对器官功能至关重要的组织-组织界面的机械活性“器官芯片”微器件,可以扩展细胞培养模型的功能,并为药物筛选和毒理学应用提供低成本替代动物和临床研究的方法。