Nunes Gustavo Adolfo Marcelino de Almeida, da Silva Ana Karoline Almeida, Faria Rafael Mendes, Santos Klériston Silva, Aguiar Arthur da Costa, Barreto Mota da Costa Lindemberg, Luz Glécia Virgolino da Silva, Carneiro Marcella Lemos Brettas, Rosa Mário Fabrício Fleury, Joanitti Graziella Anselmo, Ibiapina Karoany Maria, Gomes Ana Karen Gonçalves de Barros, da Rocha Adson Ferreira, Fleury Rosa Suélia de Siqueira Rodrigues
Postgraduate Programme in Mechatronic Systems, Department of Mechanical Engineering, Campus Darcy Ribeiro, University of Brasilia, Brasilia 70910-900, DF, Brazil.
Department of Electrical Engineering, Federal Institute of Education, Science and Technology of Triângulo Mineiro, Paracatu 38603-402, MG, Brazil.
Biomimetics (Basel). 2025 Aug 11;10(8):524. doi: 10.3390/biomimetics10080524.
Organ-on-a-chip (OoC) devices simulate human organs within a microenvironment, potentially surpassing traditional preclinical methods and paving the way for innovative treatments. A thorough understanding of the current state of OoC design enables the development of more precise and relevant models that replicate not only the structure of organs but also their intricate cellular interactions and responses to external stimuli. This knowledge facilitates the optimization of biomimetic materials and allows for the real-time simulation of physiological microenvironments. By keeping abreast of new microfabrication techniques, we can explore opportunities to create customized and highly functional OoCs.
To provide a comprehensive overview of microphysiological platform designs.
This systematic review was registered in PROSPERO under the number CRD42022352569. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The eligibility criteria included studies utilizing human tissue, either primary or secondary lineage cells.
A total of 9.790 papers were retrieved from the Scopus, Embase, IEEE and Web of Science databases. After removing duplicates and applying a 10-year publication filter, 3.150 articles were screened by title and abstract. Full-text analyses were then performed. Eighteen studies met the eligibility criteria and were included in this systematic review. In this review, we examine the principles of OoC design, focusing on structure, dimensions, cell culturing options and manufacturing techniques. We also examine recent advances and future prospects in the field.
Microphysiological devices in health research can facilitate drug discovery and improve our understanding of human physiology. They contribute to more ethical research by reducing the number of animals used in experiments.
芯片器官(OoC)设备在微环境中模拟人体器官,可能超越传统的临床前方法,为创新治疗铺平道路。深入了解OoC设计的现状有助于开发更精确、更相关的模型,这些模型不仅能复制器官的结构,还能复制其复杂的细胞相互作用以及对外部刺激的反应。这些知识有助于优化仿生材料,并实现生理微环境的实时模拟。通过紧跟新的微制造技术,我们可以探索创造定制化、高功能OoC的机会。
全面概述微生理平台设计。
本系统评价在PROSPERO中注册,注册号为CRD42022352569。我们遵循系统评价和Meta分析的首选报告项目(PRISMA)指南。纳入标准包括使用人组织(原代或二代谱系细胞)的研究。
从Scopus、Embase、IEEE和Web of Science数据库中总共检索到9790篇论文。去除重复项并应用10年出版时间筛选后,通过标题和摘要筛选出3150篇文章。然后进行全文分析。18项研究符合纳入标准,被纳入本系统评价。在本评价中,我们研究了OoC设计的原理,重点关注结构、尺寸、细胞培养选项和制造技术。我们还研究了该领域的最新进展和未来前景。
健康研究中的微生理设备有助于药物发现,并增进我们对人体生理学的理解。它们通过减少实验中使用的动物数量,为更具伦理的研究做出贡献。