Somani Arif, Steiner Marie E, Hebbel Robert P
Pediatric Critical Care Medicine and Vascular Biology Center, University of Minnesota, USA.
Transfus Apher Sci. 2010 Aug;43(1):61-8. doi: 10.1016/j.transci.2010.05.010. Epub 2010 Jun 26.
The microcirculation is not merely a passive conduit for red cell transport, nutrient and gas exchange, but is instead a dynamic participant contributing to the multiple processes involved in the maintenance of metabolic homeostasis and optimal end-organ function. The microcirculation's angioarchitechture and surface properties influence conduit function and flow dynamics over a wide spectrum of conditions, accommodating many different mechanical, pathological or organ-specific responses. The endothelium itself plays a critical role as the interface between tissues and blood components, participating in the regulation of coagulation, inflammation, vascular tone, and permeability. The complex nitric oxide pathways affect vasomotor tone and influence vascular conduit caliber and distribution density, alter thrombotic propensity, and modify adhesion molecule expression. Nitric oxide pathways also interact with red blood cells and free hemoglobin moieties in normal and pathological conditions. Red blood cells themselves may affect flow dynamics. Altered rheology and compromised NO bioavailability from medical storage or disease states impede microcirculatory flow and adversely modulate vasodilation. The integration of the microcirculation as a system with respect to flow modulation is delicately balanced, and can be readily disrupted in disease states such as sepsis. This review will provide a description of these varied and intricate functions of the microvasculature.
微循环不仅仅是红细胞运输、营养物质和气体交换的被动管道,相反,它是一个动态参与者,有助于维持代谢稳态和终末器官最佳功能的多个过程。微循环的血管结构和表面特性在广泛的条件下影响管道功能和血流动力学,适应许多不同的机械、病理或器官特异性反应。内皮本身作为组织和血液成分之间的界面发挥着关键作用,参与凝血、炎症、血管张力和通透性的调节。复杂的一氧化氮途径影响血管舒缩张力,影响血管管道口径和分布密度,改变血栓形成倾向,并调节黏附分子表达。在正常和病理条件下,一氧化氮途径还与红细胞和游离血红蛋白部分相互作用。红细胞本身可能影响血流动力学。医学储存或疾病状态导致的流变学改变和一氧化氮生物利用度受损会阻碍微循环血流,并对血管舒张产生不利调节。微循环作为一个流量调节系统的整合是微妙平衡的,在脓毒症等疾病状态下很容易被破坏。本综述将描述微血管系统的这些多样而复杂的功能。