Biometrics Research, Merck Research Laboratories, Merck & Co. Inc., Rahway, NJ 07065, USA.
J Neurosci Methods. 2010 Jul 15;190(2):248-57. doi: 10.1016/j.jneumeth.2010.05.013. Epub 2010 May 24.
With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions.
随着使用脑电图 (EEG) 揭示药物开发临床试验中的治疗效果的日益普及,EEG 数据的大量和复杂性构成了一个有趣但具有挑战性的主题。在本文中,首先回顾了 EEG 社区推荐的统计分析方法以及已发表文献中常用的方法。然后介绍了一种直接调整现有方法以处理多通道 EEG 数据的方法。此外,基于 EEG 数据的空间平滑特性,提出了一类新的统计方法。新方法使用低阶球谐(SPHARM)基函数的线性组合来表示头皮上 EEG 数据的空间平滑版本,其形状接近球体。总共应用了七种统计方法,包括现有方法和新提出的方法,将其应用于两个临床数据集,以比较它们检测药物效果的能力。与 EEG 社区的建议相反,我们的结果表明:(1) 非参数方法并不优于其参数对应方法;(2) 在分析中包括基线数据并不总是能提高统计功效。此外,我们的结果建议:(3) 由于其功效较差,应避免使用简单的配对统计检验;(4) 提出的空间平滑方法的表现优于其非平滑版本。