Suppr超能文献

用于提高患者自适应新生儿癫痫检测的 EEG 通道重要性的瞬时测量。

Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection.

机构信息

Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland.

出版信息

IEEE Trans Biomed Eng. 2012 Mar;59(3):717-27. doi: 10.1109/TBME.2011.2178411. Epub 2011 Dec 7.

Abstract

A measure of bipolar channel importance is proposed for EEG-based detection of neonatal seizures. The channel weights are computed based on the integrated synchrony of classifier probabilistic outputs for the channels which share a common electrode. These estimated time-varying weights are introduced within a Bayesian probabilistic framework to provide a channel specific and, thus, adaptive seizure classification scheme. Validation results on a clinical dataset of neonatal seizures confirm the utility of the proposed channel weighting for the two patient-independent seizure detectors recently developed by this research group: one based on support vector machines (SVMs) and the other on Gaussian mixture models (GMMs). By exploiting the channel weighting, the receiver operating characteristic (ROC) area can be significantly increased for the most difficult patients, with the average ROC area across 17 patients increased by 22% (relative) for the SVM and by 15% (relative) for the GMM-based detector, respectively. It is shown that the system developed here outperforms the recent published studies in this area.

摘要

提出了一种用于基于脑电图的新生儿癫痫检测的双极通道重要性度量。通道权重是根据共享共同电极的通道的分类器概率输出的综合同步性计算的。这些估计的时变权重被引入到贝叶斯概率框架中,以提供一种特定于通道的、因此是自适应的癫痫分类方案。对本研究小组最近开发的两种患者独立癫痫检测器的临床数据集的验证结果证实了所提出的通道加权的有效性:一种基于支持向量机 (SVM),另一种基于高斯混合模型 (GMM)。通过利用通道加权,可以显著提高最困难患者的接收者操作特性 (ROC) 面积,对于 SVM 和基于 GMM 的检测器,17 名患者的平均 ROC 面积分别增加了 22%(相对)和 15%(相对)。结果表明,这里开发的系统在该领域优于最近发表的研究。

相似文献

1
Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection.
IEEE Trans Biomed Eng. 2012 Mar;59(3):717-27. doi: 10.1109/TBME.2011.2178411. Epub 2011 Dec 7.
2
Online EEG channel weighting for detection of seizures in the neonate.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1447-50. doi: 10.1109/IEMBS.2011.6090358.
3
Performance assessment for EEG-based neonatal seizure detectors.
Clin Neurophysiol. 2011 Mar;122(3):474-482. doi: 10.1016/j.clinph.2010.06.035. Epub 2010 Aug 15.
4
Classifier models and architectures for EEG-based neonatal seizure detection.
Physiol Meas. 2008 Oct;29(10):1157-78. doi: 10.1088/0967-3334/29/10/002. Epub 2008 Sep 18.
5
Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection.
Med Biol Eng Comput. 2016 Aug;54(8):1285-93. doi: 10.1007/s11517-016-1468-y. Epub 2016 Mar 31.
6
Inclusion of temporal priors for automated neonatal EEG classification.
J Neural Eng. 2012 Aug;9(4):046002. doi: 10.1088/1741-2560/9/4/046002. Epub 2012 Jun 19.
7
EEG-based neonatal seizure detection with Support Vector Machines.
Clin Neurophysiol. 2011 Mar;122(3):464-473. doi: 10.1016/j.clinph.2010.06.034. Epub 2010 Aug 14.
8
Multi-channel EEG based neonatal seizure detection.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4679-84. doi: 10.1109/IEMBS.2006.260461.
9
Time-Varying EEG Correlations Improve Automated Neonatal Seizure Detection.
Int J Neural Syst. 2019 May;29(4):1850030. doi: 10.1142/S0129065718500302. Epub 2018 Jun 24.
10
TATPat based explainable EEG model for neonatal seizure detection.
Sci Rep. 2024 Nov 4;14(1):26688. doi: 10.1038/s41598-024-77609-x.

引用本文的文献

2
Toward a Personalized Real-Time Diagnosis in Neonatal Seizure Detection.
IEEE J Transl Eng Health Med. 2017 Sep 11;5:2800414. doi: 10.1109/JTEHM.2017.2737992. eCollection 2017.
3
Clinical implementation of a neonatal seizure detection algorithm.
Decis Support Syst. 2015 Feb;70:86-96. doi: 10.1016/j.dss.2014.12.006.
4
Noninvasive imaging of the high frequency brain activity in focal epilepsy patients.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1660-7. doi: 10.1109/TBME.2013.2297332.
5
Inclusion of temporal priors for automated neonatal EEG classification.
J Neural Eng. 2012 Aug;9(4):046002. doi: 10.1088/1741-2560/9/4/046002. Epub 2012 Jun 19.

本文引用的文献

1
Performance assessment for EEG-based neonatal seizure detectors.
Clin Neurophysiol. 2011 Mar;122(3):474-482. doi: 10.1016/j.clinph.2010.06.035. Epub 2010 Aug 15.
2
EEG-based neonatal seizure detection with Support Vector Machines.
Clin Neurophysiol. 2011 Mar;122(3):464-473. doi: 10.1016/j.clinph.2010.06.034. Epub 2010 Aug 14.
3
Gaussian mixture models for classification of neonatal seizures using EEG.
Physiol Meas. 2010 Jul;31(7):1047-64. doi: 10.1088/0967-3334/31/7/013. Epub 2010 Jun 28.
4
Convolutional neural networks for P300 detection with application to brain-computer interfaces.
IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):433-45. doi: 10.1109/TPAMI.2010.125.
5
Electroencephalography in premature and full-term infants. Developmental features and glossary.
Neurophysiol Clin. 2010 May;40(2):59-124. doi: 10.1016/j.neucli.2010.02.002. Epub 2010 Mar 16.
6
Detection of subclinical electroencephalographic seizure patterns with multichannel amplitude-integrated EEG in full-term neonates.
Clin Neurophysiol. 2009 Nov;120(11):1916-1922. doi: 10.1016/j.clinph.2009.08.015. Epub 2009 Sep 25.
7
A multistage system for the automated detection of epileptic seizures in neonatal electroencephalography.
J Clin Neurophysiol. 2009 Aug;26(4):218-26. doi: 10.1097/WNP.0b013e3181b2f29d.
8
Engineering aspects of the quantified amplitude-integrated electroencephalogram in neonatal cerebral monitoring.
J Clin Neurophysiol. 2009 Jun;26(3):145-9. doi: 10.1097/WNP.0b013e3181a18711.
9
Limitations of single-channel EEG on the forehead for neonatal seizure detection.
J Perinatol. 2009 Mar;29(3):237-42. doi: 10.1038/jp.2008.195. Epub 2008 Dec 4.
10
Automated neonatal seizure detection mimicking a human observer reading EEG.
Clin Neurophysiol. 2008 Nov;119(11):2447-54. doi: 10.1016/j.clinph.2008.07.281. Epub 2008 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验