Suppr超能文献

基于动态时间图卷积网络的时间序列异常检测用于癫痫诊断

Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis.

作者信息

Wu Guanlin, Yu Ke, Zhou Hao, Wu Xiaofei, Su Sixi

机构信息

School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China.

出版信息

Bioengineering (Basel). 2024 Jan 5;11(1):0. doi: 10.3390/bioengineering11010053.

Abstract

Electroencephalography (EEG) is typical time-series data. Designing an automatic detection model for EEG is of great significance for disease diagnosis. For example, EEG stands as one of the most potent diagnostic tools for epilepsy detection. A myriad of studies have employed EEG to detect and classify epilepsy, yet these investigations harbor certain limitations. Firstly, most existing research concentrates on the labels of sliced EEG signals, neglecting epilepsy labels associated with each time step in the original EEG signal-what we term fine-grained labels. Secondly, a majority of these studies utilize static graphs to depict EEG's spatial characteristics, thereby disregarding the dynamic interplay among EEG channels. Consequently, the efficient nature of EEG structures may not be captured. In response to these challenges, we propose a novel seizure detection and classification framework-the dynamic temporal graph convolutional network (DTGCN). This method is specifically designed to model the interdependencies in temporal and spatial dimensions within EEG signals. The proposed DTGCN model includes a unique seizure attention layer conceived to capture the distribution and diffusion patterns of epilepsy. Additionally, the model incorporates a graph structure learning layer to represent the dynamically evolving graph structure inherent in the data. We rigorously evaluated the proposed DTGCN model using a substantial publicly available dataset, TUSZ, consisting of 5499 EEGs. The subsequent experimental results convincingly demonstrated that the DTGCN model outperformed the existing state-of-the-art methods in terms of efficiency and accuracy for both seizure detection and classification tasks.

摘要

脑电图(EEG)是典型的时间序列数据。设计一种用于EEG的自动检测模型对疾病诊断具有重要意义。例如,EEG是癫痫检测最有效的诊断工具之一。大量研究已采用EEG来检测和分类癫痫,但这些研究存在一定局限性。首先,大多数现有研究集中在切片EEG信号的标签上,而忽略了与原始EEG信号中每个时间步相关的癫痫标签——我们称之为细粒度标签。其次,这些研究中的大多数利用静态图来描述EEG的空间特征,从而忽略了EEG通道之间的动态相互作用。因此,可能无法捕捉到EEG结构的高效本质。针对这些挑战,我们提出了一种新颖的癫痫发作检测和分类框架——动态时间图卷积网络(DTGCN)。该方法专门设计用于对EEG信号在时间和空间维度上的相互依赖关系进行建模。所提出的DTGCN模型包括一个独特的癫痫发作注意力层,旨在捕捉癫痫的分布和扩散模式。此外,该模型还包含一个图结构学习层,以表示数据中固有的动态演变的图结构。我们使用一个由5499个EEG组成的大量公开可用数据集TUSZ对所提出的DTGCN模型进行了严格评估。随后的实验结果令人信服地表明,在癫痫发作检测和分类任务的效率和准确性方面,DTGCN模型优于现有的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d0/11154349/5d2778f88c14/bioengineering-11-00053-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验