Nanobiology Laboratories, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
PLoS Comput Biol. 2010 Jun 17;6(6):e1000814. doi: 10.1371/journal.pcbi.1000814.
The assumption of linear response of protein molecules to thermal noise or structural perturbations, such as ligand binding or detachment, is broadly used in the studies of protein dynamics. Conformational motions in proteins are traditionally analyzed in terms of normal modes and experimental data on thermal fluctuations in such macromolecules is also usually interpreted in terms of the excitation of normal modes. We have chosen two important protein motors--myosin V and kinesin KIF1A--and performed numerical investigations of their conformational relaxation properties within the coarse-grained elastic network approximation. We have found that the linearity assumption is deficient for ligand-induced conformational motions and can even be violated for characteristic thermal fluctuations. The deficiency is particularly pronounced in KIF1A where the normal mode description fails completely in describing functional mechanochemical motions. These results indicate that important assumptions of the theory of protein dynamics may need to be reconsidered. Neither a single normal mode nor a superposition of such modes yields an approximation of strongly nonlinear dynamics.
蛋白质分子对热噪声或结构扰动(如配体结合或脱离)的线性响应的假设,在蛋白质动力学的研究中被广泛应用。传统上,蛋白质的构象运动是根据振动模式来分析的,而关于大分子热波动的实验数据也通常根据振动模式的激发来解释。我们选择了两个重要的蛋白质马达——肌球蛋白 V 和驱动蛋白 KIF1A——并在粗粒弹性网络近似下对它们的构象弛豫性质进行了数值研究。我们发现,线性假设对于配体诱导的构象运动是有缺陷的,甚至对于特征热波动也是如此。这种缺陷在 KIF1A 中尤为明显,其中振动模式描述完全无法描述其功能机械化学运动。这些结果表明,蛋白质动力学理论的重要假设可能需要重新考虑。单一的振动模式或其叠加都不能很好地近似强非线性动力学。