Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
Inorg Chem. 2010 May 3;49(9):4133-48. doi: 10.1021/ic902181e.
This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N-O bonds are 2.83-2.94 (based on the DFT functional applied) and about 12.15 mdyn/A, respectively. The electronic structures of 5C ferrous heme-nitrosyls in different model complexes are then analyzed, and variations in their properties based on different porphyrin substituents are explained. Finally, the shortcomings of different DFT functionals in describing the axial FeNO subunit in heme-nitrosyls are elucidated.
本研究提供了五配位(5C)亚铁血红素-亚硝酰配合物[Fe(OEP)(NO)](1,OEP(2-) = 八乙基卟啉二阴离子)和相应的(15)N(18)O 标记配合物的核共振振动光谱(NRVS)数据。获得的光谱在 522 和 388 cm(-1) 处识别出两个对同位素敏感的特征峰,分别标记为 508 和 381 cm(-1)。这些特征峰被分配给 Fe-NO 伸缩振动 ν(Fe-NO)和平面内 Fe-N-O 弯曲模式 δ(ip)(Fe-N-O),后一个模式首次被明确分配给 1。使用我们的量子化学中心正则坐标分析(QCC-NCA)对获得的 NRVS 数据进行了模拟。由于 1 可能以涉及 FeNO 和外围乙基取向的 12 种不同构象存在,因此进行了扩展密度泛函理论(DFT)计算和 QCC-NCA 模拟,以确定这些构象如何影响[Fe(OEP)NO]的 NRVS 性质。这些结果表明,FeNO 单元的性质和力常数几乎不受涉及取代基乙基的构象变化的影响。另一方面,NRVS 活性的卟啉基振动在 340-360、300-320 和 250-270 cm(-1) 附近对构象变化敏感。在这些区域观察到的光谱变化是由于 E(u)-型(在理想的 D(4h)对称中)卟啉基振动的一个分量与平面内 Fe-N-O 弯曲模式的选择性机械耦合引起的。这导致观察到的 Fe(OEP)核模式能量和 NRVS 强度的变化,而不影响 FeNO 单元的性质。1 的 QCC-NCA 模拟 NRVS 光谱与实验结果吻合得非常好,并表明在本研究中研究的该配合物的样品中可能存在构象 F。1 的 NRVS 光谱中观察到的卟啉基振动也基于 QCC-NCA 结果进行了分配。Fe-NO 和 N-O 键的获得力常数分别为 2.83-2.94(基于应用的 DFT 函数)和约 12.15 mdyn/A。然后分析了不同模型配合物中 5C 亚铁血红素-亚硝酰的电子结构,并解释了基于不同卟啉取代基的它们性质的变化。最后,阐明了不同 DFT 函数在描述血红素-亚硝酰中轴向 FeNO 亚基方面的缺点。