Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 812-8581, Japan.
J Phys Chem B. 2012 Nov 29;116(47):13831-8. doi: 10.1021/jp304398g. Epub 2012 Nov 14.
Nuclear resonance vibrational spectroscopy (NRVS) and density functional theory calculation (DFT) have been applied to illuminate the effect of axial ligation on the vibrational dynamics of iron in heme carbonyl. The analyses of the NRVS data of five- (5c) and six-coordinate (6c) heme-CO complexes indicate that the prominent feature of (57)Fe partial vibrational density of state ((57)FePVDOS) at the 250-300 cm(-1) region is significantly affected by the association of the axial ligand. The DFT calculations predict that the prominent (57)FePVDOS is composed of iron in-plane motions which are coupled with porphyrin pyrrole in-plane (ν(49), ν(50), and ν(53)), an out-of-plane (γ(8)) (two of four pyrrole rings include the in-plane modes, while the rest of pyrrole rings vibrate along the out-of-plane coordinate), and out-of-phase carbonyl C and O atom displacement perpendicular to the Fe-C-O axis. Thus, in the case of the 5c CO-heme the prominent (57)FePVDOS shows sharp and intense feature because of the degeneracy of the e symmetry mode within the framework of C(4v) symmetry molecule, whereas the association of the axial imidazole ligand in the 6c complex with the lowered symmetry results in split of the degenerate vibrational energy as indicated by broader and lower intensity features of the corresponding NRVS peak compared to the 5c structure. The vibrational energy of the iron in-plane motion in the 6c complex is higher than that in 5c, implying that the iron in the 6c complex includes stronger in-plane interaction with the porphyrin compared to 5c. The iron in-plane mode above 500 cm(-1), which is predominantly coupled with the out-of-phase carbonyl C and O atom motion perpendicular to Fe-C-O, called as Fe-C-O bending mode (δ(Fe-C-O)), also suggests that the 6c structure involves a larger force constant for the e symmetry mode than 5c. The DFT calculations along with the NRVS data suggest that the stiffened iron in-plane motion in the 6c complex can be ascribed to diminished pseudo-Jahn-Teller instability along the e symmetry displacement due to an increased a(1)-e orbital energy gap caused by σ* interaction between the iron d(z(2)) orbital and the nitrogen p orbital from the axial imidazole ligand. Thus, the present study implicates a fundamental molecular mechanism of axial ligation of heme in association with a diatomic gas molecule, which is a key primary step toward versatile biological functions.
核共振振动光谱(NRVS)和密度泛函理论计算(DFT)已被应用于阐明轴向配体对血红素羰基中铁的振动动力学的影响。对五配位(5c)和六配位(6c)血红素-CO 配合物的 NRVS 数据分析表明,在 250-300cm(-1) 区域内,(57)Fe 部分振动态密度((57)FePVDOS)的显著特征显著受轴向配体的影响。DFT 计算预测,显著的(57)FePVDOS 由铁的面内运动组成,这些运动与卟啉吡咯的面内(ν(49)、ν(50)和 ν(53))、面外(γ(8))(四个吡咯环中的两个包括面内模式,而其余吡咯环沿面外坐标振动)以及反相羰基 C 和 O 原子位移垂直于 Fe-C-O 轴。因此,在 5c CO-血红素的情况下,由于 C(4v) 分子框架内 e 对称模式的简并性,显著的(57)FePVDOS 表现出尖锐和强烈的特征,而在 6c 配合物中与轴向咪唑配体的缔合导致简并振动能量的分裂,这表现为与 5c 结构相比,相应的 NRVS 峰的强度特征变宽且强度降低。6c 配合物中铁的面内运动的振动能高于 5c,这意味着与 5c 相比,6c 配合物中铁与卟啉的面内相互作用更强。高于 500cm(-1)的铁面内模式,主要与反相羰基 C 和 O 原子垂直于 Fe-C-O 的运动耦合,称为 Fe-C-O 弯曲模式(δ(Fe-C-O)),这也表明 6c 结构比 5c 具有更大的 e 对称模式力常数。DFT 计算与 NRVS 数据一起表明,6c 配合物中铁的刚性面内运动可归因于沿 e 对称位移的伪 Jahn-Teller 不稳定性减小,这是由于铁 d(z(2))轨道与轴向咪唑配体的氮 p 轨道之间的σ*相互作用导致的 a(1)-e 轨道能隙增大所致。因此,本研究表明血红素与双原子气体分子缔合的轴向配体的基本分子机制,这是多功能生物功能的关键初步步骤。