Department of Biostatistics, Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8575, USA.
J Proteome Res. 2010 Aug 6;9(8):4295-305. doi: 10.1021/pr100527g.
Shotgun proteomics provides the most powerful analytical platform for global inventory of complex proteomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and allows a global analysis of protein changes. Nevertheless, sampling of complex proteomes by current shotgun proteomics platforms is incomplete, and this contributes to variability in assessment of peptide and protein inventories by spectral counting approaches. Thus, shotgun proteomics data pose challenges in comparing proteomes from different biological states. We developed an analysis strategy using quasi-likelihood Generalized Linear Modeling (GLM), included in a graphical interface software package (QuasiTel) that reads standard output from protein assemblies created by IDPicker, an HTML-based user interface to query shotgun proteomic data sets. This approach was compared to four other statistical analysis strategies: Student t test, Wilcoxon rank test, Fisher's Exact test, and Poisson-based GLM. We analyzed the performance of these tests to identify differences in protein levels based on spectral counts in a shotgun data set in which equimolar amounts of 48 human proteins were spiked at different levels into whole yeast lysates. Both GLM approaches and the Fisher Exact test performed adequately, each with their unique limitations. We subsequently compared the proteomes of normal tonsil epithelium and HNSCC using this approach and identified 86 proteins with differential spectral counts between normal tonsil epithelium and HNSCC. We selected 18 proteins from this comparison for verification of protein levels between the individual normal and tumor tissues using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM-MS). This analysis confirmed the magnitude and direction of the protein expression differences in all 6 proteins for which reliable data could be obtained. Our analysis demonstrates that shotgun proteomic data sets from different tissue phenotypes are sufficiently rich in quantitative information and that statistically significant differences in proteins spectral counts reflect the underlying biology of the samples.
shotgun 蛋白质组学提供了最强大的分析平台,可使用液相色谱-串联质谱 (LC-MS/MS) 对复杂蛋白质组进行全局清单分析,并允许对蛋白质变化进行全局分析。然而,当前 shotgun 蛋白质组学平台对复杂蛋白质组的采样并不完整,这导致基于光谱计数方法评估肽和蛋白质清单的可变性。因此,shotgun 蛋白质组学数据在比较来自不同生物学状态的蛋白质组时带来了挑战。我们开发了一种使用拟似似然广义线性建模 (GLM) 的分析策略,该策略包含在图形界面软件包 (QuasiTel) 中,该软件包可读取由 IDPicker 创建的蛋白质组装的标准输出,IDPicker 是一个基于 HTML 的用户界面,用于查询 shotgun 蛋白质组数据集。我们将这种方法与其他四种统计分析策略进行了比较:学生 t 检验、Wilcoxon 秩检验、Fisher 精确检验和基于泊松的 GLM。我们分析了这些测试的性能,以根据 shotgun 数据集中的光谱计数识别蛋白质水平的差异,其中 48 种人类蛋白质的等摩尔量以不同水平掺入整个酵母裂解物中。GLM 方法和 Fisher 精确检验都表现良好,各自具有独特的局限性。随后,我们使用这种方法比较了正常扁桃体上皮组织和 HNSCC 的蛋白质组,确定了正常扁桃体上皮组织和 HNSCC 之间光谱计数存在差异的 86 种蛋白质。我们从该比较中选择了 18 种蛋白质,用于使用液相色谱-多重反应监测质谱法 (LC-MRM-MS) 在个体正常和肿瘤组织之间验证蛋白质水平。该分析证实了在所有 6 种蛋白质中,可靠数据可获得的蛋白质表达差异的幅度和方向。我们的分析表明,来自不同组织表型的 shotgun 蛋白质组学数据集具有足够丰富的定量信息,并且蛋白质光谱计数的统计学显着差异反映了样品的基础生物学。
J Proteome Res. 2010-8-6
J Proteomics. 2016-7-20
J Proteome Res. 2006-11
BMC Bioinformatics. 2008-12-9
BMC Bioinformatics. 2008-12-16
J Proteome Res. 2010-10-1
Mol Cell Proteomics. 2025-5-5
Acta Neuropathol Commun. 2023-1-26
Mass Spectrom Rev. 2023-5
Ann Clin Transl Neurol. 2022-3
Clin Proteomics. 2018-9-20
Mol Cell Proteomics. 2009-10-26
Mol Cell Proteomics. 2008-12
J Proteome Res. 2008-3