Suppr超能文献

基于定量成像数据的肿瘤生长和治疗反应建模。

Modeling tumor growth and treatment response based on quantitative imaging data.

机构信息

Institute of Imaging Science, 1161 21st Avenue South, Vanderbilt University Medical Center, Nashville, TN 37212-2310, USA.

出版信息

Integr Biol (Camb). 2010 Aug;2(7-8):338-45. doi: 10.1039/b921497f. Epub 2010 Jul 2.

Abstract

We review current approaches to predicting tumor growth and treatment response that combine non-invasive imaging data with mathematical models of cancer progression, and propose some new directions for integrating quantitative imaging measurements with such numerical analyses. Historically, tumor modeling has been described by parameters that are measurable by invasive methods only or in isolated in vitro or ex vivo systems. This limits the practical usefulness of such models because it is not possible to test their predictions experimentally. Recent advances in three-dimensional magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography techniques provide new opportunities to acquire measurements of relevant molecular and cellular features of tumors non-invasively and with high spatial resolution. Such data can be incorporated into mathematical models of tumors. We highlight some recent examples of this approach and identify several simple examples that allow for conventional mathematical models of tumor growth to be recast in terms of parameters that can be measured by imaging, thus raising the possibility of designing and constraining models that can be tested in clinical practice. It is our hope that this Perspective will stimulate further work in this evolving and exciting field.

摘要

我们回顾了当前将非侵入性成像数据与癌症进展的数学模型相结合来预测肿瘤生长和治疗反应的方法,并提出了将定量成像测量与这些数值分析相结合的一些新方向。从历史上看,肿瘤模型的描述参数只能通过侵入性方法或在孤立的体外或离体系统中测量。这限制了此类模型的实际用途,因为不可能通过实验来检验其预测。三维磁共振成像、单光子发射计算机断层扫描和正电子发射断层扫描技术的最新进展为非侵入性和高空间分辨率地获取肿瘤相关分子和细胞特征的测量值提供了新的机会。这些数据可以被纳入肿瘤的数学模型中。我们强调了这种方法的一些最新例子,并确定了一些简单的例子,这些例子允许用成像测量的参数来重新构建肿瘤生长的传统数学模型,从而有可能设计和约束可以在临床实践中进行测试的模型。我们希望这一观点能够激发该不断发展和令人兴奋的领域的进一步研究。

相似文献

1
Modeling tumor growth and treatment response based on quantitative imaging data.
Integr Biol (Camb). 2010 Aug;2(7-8):338-45. doi: 10.1039/b921497f. Epub 2010 Jul 2.
4
In vivo mathematical modeling of tumor growth from imaging data: soon to come in the future?
Diagn Interv Imaging. 2013 Jun;94(6):593-600. doi: 10.1016/j.diii.2013.03.001. Epub 2013 Apr 10.
5
Imaging tumor microenvironment with ultrasound.
Inf Process Med Imaging. 2005;19:516-28. doi: 10.1007/11505730_43.
7
The integration of quantitative multi-modality imaging data into mathematical models of tumors.
Phys Med Biol. 2010 May 7;55(9):2429-49. doi: 10.1088/0031-9155/55/9/001. Epub 2010 Apr 6.

引用本文的文献

1
Phytohormones involved in vascular cambium activity in woods: current progress and future challenges.
Front Plant Sci. 2024 Dec 17;15:1508242. doi: 10.3389/fpls.2024.1508242. eCollection 2024.
2
Modeling Tumor Growth Using Partly Conditional Survival Models: A Case Study in Colorectal Cancer.
JCO Clin Cancer Inform. 2023 Sep;7:e2200203. doi: 10.1200/CCI.22.00203.
4
Proving of a Mathematical Model of Cell Calculation Based on Apparent Diffusion Coefficient.
Transl Oncol. 2017 Oct;10(5):828-830. doi: 10.1016/j.tranon.2017.08.001. Epub 2017 Aug 29.
5
An imaging-based computational model for simulating angiogenesis and tumour oxygenation dynamics.
Phys Med Biol. 2016 May 21;61(10):3885-902. doi: 10.1088/0031-9155/61/10/3885. Epub 2016 Apr 27.
6
Towards the Personalized Treatment of Glioblastoma: Integrating Patient-Specific Clinical Data in a Continuous Mechanical Model.
PLoS One. 2015 Jul 17;10(7):e0132887. doi: 10.1371/journal.pone.0132887. eCollection 2015.
8
Serial diffusion MRI to monitor and model treatment response of the targeted nanotherapy CRLX101.
Clin Cancer Res. 2013 May 1;19(9):2518-27. doi: 10.1158/1078-0432.CCR-12-2738. Epub 2013 Mar 26.

本文引用的文献

1
The integration of quantitative multi-modality imaging data into mathematical models of tumors.
Phys Med Biol. 2010 May 7;55(9):2429-49. doi: 10.1088/0031-9155/55/9/001. Epub 2010 Apr 6.
2
Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples.
Curr Med Imaging Rev. 2009 May 1;3(2):91-107. doi: 10.2174/157340507780619179.
3
Multiscale model of liver DCE-MRI towards a better understanding of tumor complexity.
IEEE Trans Med Imaging. 2010 Mar;29(3):699-707. doi: 10.1109/TMI.2009.2031435. Epub 2009 Sep 15.
4
Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging.
Semin Nucl Med. 2009 Jul;39(4):276-89. doi: 10.1053/j.semnuclmed.2009.03.003.
5
Advances in cardiovascular fluid mechanics: bench to bedside.
Ann N Y Acad Sci. 2009 Apr;1161:1-25. doi: 10.1111/j.1749-6632.2008.04320.x.
6
Prediction of drug response in breast cancer using integrative experimental/computational modeling.
Cancer Res. 2009 May 15;69(10):4484-92. doi: 10.1158/0008-5472.CAN-08-3740. Epub 2009 Apr 14.
8
Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study.
J Biomech. 2009 Mar 26;42(5):565-72. doi: 10.1016/j.jbiomech.2008.12.014. Epub 2009 Feb 20.
10
New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
Eur J Cancer. 2009 Jan;45(2):228-47. doi: 10.1016/j.ejca.2008.10.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验