Suppr超能文献

将定量多模态成像数据整合到肿瘤的数学模型中。

The integration of quantitative multi-modality imaging data into mathematical models of tumors.

机构信息

Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.

出版信息

Phys Med Biol. 2010 May 7;55(9):2429-49. doi: 10.1088/0031-9155/55/9/001. Epub 2010 Apr 6.

Abstract

Quantitative imaging data obtained from multiple modalities may be integrated into mathematical models of tumor growth and treatment response to achieve additional insights of practical predictive value. We show how this approach can describe the development of tumors that appear realistic in terms of producing proliferating tumor rims and necrotic cores. Two established models (the logistic model with and without the effects of treatment) and one novel model built a priori from available imaging data have been studied. We modify the logistic model to predict the spatial expansion of a tumor driven by tumor cell migration after a voxel's carrying capacity has been reached. Depending on the efficacy of a simulated cytotoxic treatment, we show that the tumor may either continue to expand, or contract. The novel model includes hypoxia as a driver of tumor cell movement. The starting conditions for these models are based on imaging data related to the tumor cell number (as estimated from diffusion-weighted MRI), apoptosis (from 99mTc-Annexin-V SPECT), cell proliferation and hypoxia (from PET). We conclude that integrating multi-modality imaging data into mathematical models of tumor growth is a promising combination that can capture the salient features of tumor growth and treatment response and this indicates the direction for additional research.

摘要

从多种模式获得的定量成像数据可以整合到肿瘤生长和治疗反应的数学模型中,以获得具有实际预测价值的额外见解。我们展示了这种方法如何描述产生增殖性肿瘤边缘和坏死核心的逼真肿瘤发展。研究了两种已建立的模型(具有和不具有治疗效果的逻辑模型)和一种根据现有成像数据预先构建的新模型。我们修改了逻辑模型,以预测在达到体素承载能力后,由肿瘤细胞迁移驱动的肿瘤的空间扩展。根据模拟细胞毒性治疗的效果,我们可以看到肿瘤可能会继续扩大,也可能会收缩。新模型将缺氧作为肿瘤细胞运动的驱动力。这些模型的起始条件基于与肿瘤细胞数量相关的成像数据(根据扩散加权 MRI 估计)、细胞凋亡(来自 99mTc-Annexin-V SPECT)、细胞增殖和缺氧(来自 PET)。我们得出的结论是,将多模态成像数据整合到肿瘤生长的数学模型中是一种很有前途的组合,可以捕捉肿瘤生长和治疗反应的显著特征,这为进一步的研究指明了方向。

相似文献

1
The integration of quantitative multi-modality imaging data into mathematical models of tumors.
Phys Med Biol. 2010 May 7;55(9):2429-49. doi: 10.1088/0031-9155/55/9/001. Epub 2010 Apr 6.
2
(99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials.
Eur J Nucl Med Mol Imaging. 2015 Dec;42(13):2083-97. doi: 10.1007/s00259-015-3152-0. Epub 2015 Aug 16.
3
Tumor hypoxia imaging.
Mol Imaging Biol. 2011 Jun;13(3):399-410. doi: 10.1007/s11307-010-0420-z.
7
Mapping of treatment-induced apoptosis in normal structures: 99mTc-Hynic-rh-annexin V SPECT and CT image fusion.
Eur J Nucl Med Mol Imaging. 2006 Aug;33(8):893-9. doi: 10.1007/s00259-006-0070-1. Epub 2006 Apr 4.

引用本文的文献

3
Predicting the spatio-temporal response of recurrent glioblastoma treated with rhenium-186 labelled nanoliposomes.
Brain Multiphys. 2023 Dec;5. doi: 10.1016/j.brain.2023.100084. Epub 2023 Oct 29.
4
Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting.
Nat Protoc. 2021 Nov;16(11):5309-5338. doi: 10.1038/s41596-021-00617-y. Epub 2021 Sep 22.
8
Mathematical models of tumor cell proliferation: A review of the literature.
Expert Rev Anticancer Ther. 2018 Dec;18(12):1271-1286. doi: 10.1080/14737140.2018.1527689. Epub 2018 Oct 22.
10
Precision Medicine with Imprecise Therapy: Computational Modeling for Chemotherapy in Breast Cancer.
Transl Oncol. 2018 Jun;11(3):732-742. doi: 10.1016/j.tranon.2018.03.009. Epub 2018 Apr 16.

本文引用的文献

1
Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas.
J Neurooncol. 2009 Sep;94(3):299-312. doi: 10.1007/s11060-009-9875-7. Epub 2009 Apr 21.
3
New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).
Eur J Cancer. 2009 Jan;45(2):228-47. doi: 10.1016/j.ejca.2008.10.026.
4
Imaging angiogenesis and the microenvironment.
APMIS. 2008 Jul-Aug;116(7-8):695-715. doi: 10.1111/j.1600-0463.2008.01148.x.
5
New technologies for human cancer imaging.
J Clin Oncol. 2008 Aug 20;26(24):4012-21. doi: 10.1200/JCO.2007.14.3065.
7
Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging.
Phys Med Biol. 2008 Feb 21;53(4):879-93. doi: 10.1088/0031-9155/53/4/004. Epub 2008 Jan 15.
8
Modeling glioma growth and mass effect in 3D MR images of the brain.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):642-50. doi: 10.1007/978-3-540-75757-3_78.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验