Suppr超能文献

多种机制塑造了棕蝙蝠下丘和听觉皮层对调频扫频率和方向的选择性。

Multiple mechanisms shape selectivity for FM sweep rate and direction in the pallid bat inferior colliculus and auditory cortex.

机构信息

Department 3166, Zoology and Physiology, University of Wyoming, 1000 E. University Ave, Laramie, WY 82071, USA.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 May;197(5):615-23. doi: 10.1007/s00359-010-0554-0. Epub 2010 Jul 2.

Abstract

The inferior colliculus and auditory cortex of the pallid bat contain a large percentage of neurons that are highly selective for the direction and rate of the downward frequency modulated (FM) sweep of the bat's echolocation pulse. Approximately 25% of neurons tuned to the echolocation pulse respond exclusively to downward FM sweeps. This review focuses on the finding that this selectivity is generated by multiple mechanisms that may act alone or in concert. In the inferior colliculus, selectivity for sweep rate is shaped by at least three mechanisms: shortpass or bandpass tuning for signal duration, delayed high-frequency inhibition that prevents responses to slow sweep rates, and asymmetrical facilitation that occurs only when two tones are presented at appropriate delays. When acting alone, the three mechanisms can produce essentially identical rate selectivity. Direction selectivity can be produced by two mechanisms: an early low-frequency inhibition that prevents responses to upward sweeps, and the same asymmetrical two-tone inhibition that shapes rate tuning. All mechanisms except duration tuning are also present in the auditory cortex. Discussion centers on whether these mechanisms are redundant or complementary.

摘要

苍白蝙蝠的下丘和听觉皮层包含大量对蝙蝠回声定位脉冲的频率调制(FM)向下扫频的方向和速率具有高度选择性的神经元。大约 25%的调谐到回声定位脉冲的神经元专门对向下 FM 扫频做出反应。这篇综述重点介绍了以下发现:这种选择性是由多个机制产生的,这些机制可以单独或协同作用。在下丘,对扫频速率的选择性由至少三种机制形成:信号持续时间的短通或带通调谐、延迟的高频抑制,防止对慢扫频速率的响应,以及仅在两个音调以适当的延迟呈现时发生的不对称促进。当单独作用时,这三种机制可以产生本质上相同的速率选择性。方向选择性可以由两种机制产生:一种是早期的低频抑制,防止对向上扫频的响应,以及形成速率调谐的相同的不对称双音抑制。除了持续时间调谐之外,所有机制都存在于听觉皮层中。讨论集中在这些机制是冗余的还是互补的。

相似文献

1
Multiple mechanisms shape selectivity for FM sweep rate and direction in the pallid bat inferior colliculus and auditory cortex.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 May;197(5):615-23. doi: 10.1007/s00359-010-0554-0. Epub 2010 Jul 2.
2
Response selectivity for multiple dimensions of frequency sweeps in the pallid bat inferior colliculus.
J Neurophysiol. 1994 Sep;72(3):1061-79. doi: 10.1152/jn.1994.72.3.1061.
5
Facilitatory mechanisms shape selectivity for the rate and direction of FM sweeps in the inferior colliculus of the pallid bat.
J Neurophysiol. 2010 Sep;104(3):1456-71. doi: 10.1152/jn.00598.2009. Epub 2010 Jul 14.
6
GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.
J Neurophysiol. 2009 Sep;102(3):1366-78. doi: 10.1152/jn.00334.2009. Epub 2009 Jun 24.
7
Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus.
J Neurophysiol. 1996 Aug;76(2):1059-73. doi: 10.1152/jn.1996.76.2.1059.
8
Mechanisms underlying intensity-dependent changes in cortical selectivity for frequency-modulated sweeps.
J Neurophysiol. 2012 Apr;107(8):2202-11. doi: 10.1152/jn.00922.2011. Epub 2012 Jan 25.
9
Differential roles of GABAergic and glycinergic input on FM selectivity in the inferior colliculus of the pallid bat.
J Neurophysiol. 2011 Nov;106(5):2523-35. doi: 10.1152/jn.00569.2011. Epub 2011 Jul 20.
10
Tuning for rate and duration of frequency-modulated sweeps in the mammalian inferior colliculus.
J Neurophysiol. 2018 Sep 1;120(3):985-997. doi: 10.1152/jn.00065.2018. Epub 2018 May 23.

引用本文的文献

1
Tuned in to communication sounds: Neuronal sensitivity in the túngara frog midbrain to frequency modulated signals.
PLoS One. 2022 May 19;17(5):e0268383. doi: 10.1371/journal.pone.0268383. eCollection 2022.
2
Neural modelling of the encoding of fast frequency modulation.
PLoS Comput Biol. 2021 Mar 3;17(3):e1008787. doi: 10.1371/journal.pcbi.1008787. eCollection 2021 Mar.
3
Laminar Organization of FM Direction Selectivity in the Primary Auditory Cortex of the Free-Tailed Bat.
Front Neural Circuits. 2019 Nov 27;13:76. doi: 10.3389/fncir.2019.00076. eCollection 2019.
5
Frequency tuning of synaptic inhibition underlying duration-tuned neurons in the mammalian inferior colliculus.
J Neurophysiol. 2017 Apr 1;117(4):1636-1656. doi: 10.1152/jn.00807.2016. Epub 2017 Jan 18.
7
Phasic, suprathreshold excitation and sustained inhibition underlie neuronal selectivity for short-duration sounds.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1927-35. doi: 10.1073/pnas.1520971113. Epub 2016 Mar 14.
8
Balance or imbalance: inhibitory circuits for direction selectivity in the auditory system.
Cell Mol Life Sci. 2015 May;72(10):1893-906. doi: 10.1007/s00018-015-1841-2. Epub 2015 Feb 1.
9
Network models of frequency modulated sweep detection.
PLoS One. 2014 Dec 16;9(12):e115196. doi: 10.1371/journal.pone.0115196. eCollection 2014.
10
Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat.
Dev Neurobiol. 2015 Oct;75(10):1125-39. doi: 10.1002/dneu.22226. Epub 2014 Aug 28.

本文引用的文献

1
GABA shapes selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex.
J Neurophysiol. 2009 Sep;102(3):1366-78. doi: 10.1152/jn.00334.2009. Epub 2009 Jun 24.
3
Glycinergic "inhibition" mediates selective excitatory responses to combinations of sounds.
J Neurosci. 2008 Jan 2;28(1):80-90. doi: 10.1523/JNEUROSCI.3572-07.2008.
5
Intracellular recording reveals temporal integration in inferior colliculus neurons of awake bats.
J Neurophysiol. 2007 Feb;97(2):1368-78. doi: 10.1152/jn.00976.2006. Epub 2006 Nov 29.
9
Synaptic integration in dendritic trees.
J Neurobiol. 2005 Jul;64(1):75-90. doi: 10.1002/neu.20144.
10
Can two streams of auditory information be processed simultaneously? Evidence from the gleaning bat Antrozous pallidus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2003 Nov;189(11):843-55. doi: 10.1007/s00359-003-0463-6. Epub 2003 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验