Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
Neuroimage. 2011 May 15;56(2):440-54. doi: 10.1016/j.neuroimage.2010.06.052. Epub 2010 Jun 30.
This article reviews a technological advance that originates from two areas of ongoing neuroimaging innovation-(1) the use of multivariate supervised learning to decode brain states and (2) real-time functional magnetic resonance imaging (rtfMRI). The approach uses multivariate methods to train a model capable of decoding a subject's brain state from fMRI images. The decoded brain states can be used as a control signal for a brain computer interface (BCI) or to provide neurofeedback to the subject. The ability to adapt the stimulus during the fMRI experiment adds a new level of flexibility for task paradigms and has potential applications in a number of areas, including performance enhancement, rehabilitation, and therapy. Multivariate approaches to real-time fMRI are complementary to region-of-interest (ROI)-based methods and provide a principled method for dealing with distributed patterns of brain responses. Specifically, a multivariate approach is advantageous when network activity is expected, when mental strategies could vary from individual to individual, or when one or a few ROIs are not unequivocally the most appropriate for the investigation. Beyond highlighting important developments in rtfMRI and supervised learning, the article discusses important practical issues, including implementation considerations, existing resources, and future challenges and opportunities. Some possible future directions are described, calling for advances arising from increased experimental flexibility, improvements in predictive modeling, better comparisons across rtfMRI and other BCI implementations, and further investigation of the types of feedback and degree to which interface modulation is obtainable for various tasks.
(1)使用多元监督学习对脑状态进行解码;(2)实时功能磁共振成像(rtfMRI)。该方法使用多元方法训练一个能够从 fMRI 图像中解码受试者脑状态的模型。解码的脑状态可以用作脑机接口(BCI)的控制信号,或为受试者提供神经反馈。在 fMRI 实验中能够自适应刺激增加了任务范式的新灵活性,并且在许多领域具有潜在的应用,包括性能增强、康复和治疗。用于实时 fMRI 的多元方法与基于感兴趣区域(ROI)的方法互补,为处理脑反应的分布式模式提供了一种原则性方法。具体而言,当预期网络活动、个体之间的心理策略可能不同、或者一个或几个 ROI 不是最合适的研究对象时,多元方法具有优势。除了突出 rtfMRI 和监督学习的重要发展外,本文还讨论了重要的实际问题,包括实施考虑因素、现有资源以及未来的挑战和机遇。描述了一些可能的未来方向,呼吁在实验灵活性提高、预测建模改进、更好地比较 rtfMRI 和其他 BCI 实现、以及进一步研究各种任务的反馈类型和接口调制程度方面取得进展。