Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York 10065, USA.
Nature. 2010 Jul 29;466(7306):617-21. doi: 10.1038/nature09178. Epub 2010 Jul 4.
Connectivity in the cortex is organized at multiple scales, suggesting that scale-dependent correlated activity is particularly important for understanding the behaviour of sensory cortices and their function in stimulus encoding. We analysed the scale-dependent structure of cortical interactions by using maximum entropy models to characterize multiple-tetrode recordings from primary visual cortex of anaesthetized macaque monkeys (Macaca mulatta). We compared the properties of firing patterns among local clusters of neurons (<300 microm apart) with those of neurons separated by larger distances (600-2,500 microm). Here we report that local firing patterns are distinctive: whereas multi-neuronal firing patterns at larger distances can be predicted by pairwise interactions, patterns within local clusters often show evidence of high-order correlations. Surprisingly, these local correlations are flexible and rapidly reorganized by visual input. Although they modestly reduce the amount of information that a cluster conveys, they also modify the format of this information, creating sparser codes by increasing the periods of total quiescence, and concentrating information into briefer periods of common activity. These results imply a hierarchical organization of neuronal correlations: simple pairwise correlations link neurons over scales of tens to hundreds of minicolumns, but on the scale of a few minicolumns, ensembles of neurons form complex subnetworks whose moment-to-moment effective connectivity is dynamically reorganized by the stimulus.
皮层中的连接是在多个尺度上组织的,这表明尺度相关的相关活动对于理解感觉皮层的行为及其在刺激编码中的功能尤为重要。我们通过使用最大熵模型来分析皮层相互作用的尺度依赖性结构,对麻醉猕猴(Macaca mulatta)初级视觉皮层的多电极记录进行了分析。我们比较了局部神经元簇(<300 微米)和远距离神经元(600-2500 微米)之间的发射模式的特性。在这里,我们报告说局部发射模式是独特的:尽管远距离的多神经元发射模式可以通过成对相互作用来预测,但局部簇内的模式通常显示出高阶相关性的证据。令人惊讶的是,这些局部相关性具有灵活性,可以通过视觉输入快速重新组织。尽管它们适度地减少了簇所传达的信息量,但它们也通过增加总静止期和将信息集中在更短的共同活动期来改变信息的格式,从而创建更稀疏的代码。这些结果意味着神经元相关性的分层组织:简单的成对相关性将数十到数百个微柱的神经元连接起来,但在几个微柱的尺度上,神经元集合形成复杂的子网,其瞬间有效的连接性通过刺激动态地重新组织。