Suppr超能文献

三神经元放电模式的信息几何测度表征了皮质网络中的尺度依赖性。

Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks.

作者信息

Ohiorhenuan Ifije E, Victor Jonathan D

机构信息

Division of Systems Neurology and Neuroscience, Department of Neurology and Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.

出版信息

J Comput Neurosci. 2011 Feb;30(1):125-41. doi: 10.1007/s10827-010-0257-0. Epub 2010 Jul 16.

Abstract

To understand the functional connectivity of neural networks, it is important to develop simple and incisive descriptors of multineuronal firing patterns. Analysis at the pairwise level has proven to be a powerful approach in the retina, but it may not suffice to understand complex cortical networks. Here we address the problem of describing interactions among triplets of neurons. We consider two approaches: an information-geometric measure (Amari 2001), which we call the "strain," and the Kullback-Leibler divergence. While both approaches can be used to assess whether firing patterns differ from those predicted by a pairwise maximum-entropy model, the strain provides additional information. Specifically, when the observed firing patterns differ from those predicted by a pairwise model, the strain indicates the nature of this difference--whether there is an excess or a deficit of synchrony--while the Kullback-Leibler divergence only indicates the magnitude of the difference. We show that the strain has technical advantages, including ease of calculation of confidence bounds and bias, and robustness to the kinds of spike-sorting errors associated with tetrode recordings. We demonstrate the biological importance of these points via an analysis of multineuronal firing patterns in primary visual cortex. There is a striking scale-dependent behavior of triplet firing patterns: deviations from the pairwise model are substantial when the neurons are within 300 microns of each other, and negligible when they are at a distance of >600 microns. The strain identifies a consistent pattern to these interactions: when triplet interactions are present, the strain is nearly always negative, indicating that there is less synchrony than would be expected from the pairwise interactions alone.

摘要

为了理解神经网络的功能连接性,开发简单而深刻的多神经元放电模式描述符非常重要。在视网膜中,成对水平的分析已被证明是一种强大的方法,但它可能不足以理解复杂的皮层网络。在这里,我们解决描述神经元三元组之间相互作用的问题。我们考虑两种方法:一种信息几何度量(Amari,2001年),我们称之为“应变”,以及库尔贝克-莱布勒散度。虽然这两种方法都可用于评估放电模式是否与成对最大熵模型预测的模式不同,但应变提供了额外信息。具体而言,当观察到的放电模式与成对模型预测的模式不同时,应变表明这种差异的性质——是同步过剩还是不足——而库尔贝克-莱布勒散度仅表明差异的大小。我们表明,应变具有技术优势,包括易于计算置信区间和偏差,以及对与四极管记录相关的各种尖峰分类误差具有鲁棒性。我们通过对初级视觉皮层中多神经元放电模式的分析证明了这些观点的生物学重要性。三元组放电模式存在显著的尺度依赖性行为:当神经元彼此距离在300微米以内时,与成对模型的偏差很大,而当它们距离大于600微米时,偏差可忽略不计。应变识别出这些相互作用的一致模式:当存在三元组相互作用时,应变几乎总是负的,表明同步性比仅由成对相互作用预期的要少。

相似文献

1
Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks.
J Comput Neurosci. 2011 Feb;30(1):125-41. doi: 10.1007/s10827-010-0257-0. Epub 2010 Jul 16.
2
The structure of multi-neuron firing patterns in primate retina.
J Neurosci. 2006 Aug 9;26(32):8254-66. doi: 10.1523/JNEUROSCI.1282-06.2006.
3
Sparse coding and high-order correlations in fine-scale cortical networks.
Nature. 2010 Jul 29;466(7306):617-21. doi: 10.1038/nature09178. Epub 2010 Jul 4.
4
A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro.
J Neurosci. 2008 Jan 9;28(2):505-18. doi: 10.1523/JNEUROSCI.3359-07.2008.
5
Information-geometric measure for neural spikes.
Neural Comput. 2002 Oct;14(10):2269-316. doi: 10.1162/08997660260293238.
6
Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
J Physiol Paris. 2006 Jul-Sep;100(1-3):88-99. doi: 10.1016/j.jphysparis.2006.09.001. Epub 2006 Oct 24.
7
Spiking neural networks for cortical neuronal spike train decoding.
Neural Comput. 2010 Apr;22(4):1060-85. doi: 10.1162/neco.2009.10-08-885.
8
Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.
J Neurosci. 2015 Sep 23;35(38):13076-89. doi: 10.1523/JNEUROSCI.1262-15.2015.
9
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
J Comput Neurosci. 2007 Oct;23(2):237-50. doi: 10.1007/s10827-007-0030-1. Epub 2007 Apr 6.
10
Generating spike trains with specified correlation coefficients.
Neural Comput. 2009 Feb;21(2):397-423. doi: 10.1162/neco.2008.02-08-713.

引用本文的文献

3
Representation of foreseeable choice outcomes in orbitofrontal cortex triplet-wise interactions.
PLoS Comput Biol. 2020 Jun 24;16(6):e1007862. doi: 10.1371/journal.pcbi.1007862. eCollection 2020 Jun.
4
Autonomous emergence of connectivity assemblies via spike triplet interactions.
PLoS Comput Biol. 2020 May 8;16(5):e1007835. doi: 10.1371/journal.pcbi.1007835. eCollection 2020 May.
6
Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons.
PLoS Comput Biol. 2018 May 4;14(5):e1006153. doi: 10.1371/journal.pcbi.1006153. eCollection 2018 May.
7
Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
J Neurosci. 2017 Oct 25;37(43):10481-10497. doi: 10.1523/JNEUROSCI.0451-17.2017. Epub 2017 Sep 26.
9
Modeling higher-order correlations within cortical microcolumns.
PLoS Comput Biol. 2014 Jul 3;10(7):e1003684. doi: 10.1371/journal.pcbi.1003684. eCollection 2014 Jul.
10
When do microcircuits produce beyond-pairwise correlations?
Front Comput Neurosci. 2014 Feb 6;8:10. doi: 10.3389/fncom.2014.00010. eCollection 2014.

本文引用的文献

1
GABAergic hub neurons orchestrate synchrony in developing hippocampal networks.
Science. 2009 Dec 4;326(5958):1419-24. doi: 10.1126/science.1175509.
2
Subpopulations of neurons in visual area v2 perform differentiation and integration operations in space and time.
Front Syst Neurosci. 2009 Nov 4;3:15. doi: 10.3389/neuro.06.015.2009. eCollection 2009.
3
Oscillations and synchrony in large-scale cortical network models.
J Biol Phys. 2008 Aug;34(3-4):279-99. doi: 10.1007/s10867-008-9079-y. Epub 2008 Jun 17.
4
The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex.
Philos Trans A Math Phys Eng Sci. 2009 Aug 28;367(1901):3297-310. doi: 10.1098/rsta.2009.0082.
5
Ising model for neural data: model quality and approximate methods for extracting functional connectivity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051915. doi: 10.1103/PhysRevE.79.051915. Epub 2009 May 19.
6
An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes.
J Comput Neurosci. 2010 Aug;29(1-2):127-148. doi: 10.1007/s10827-009-0163-5. Epub 2009 Jun 5.
7
Pairwise maximum entropy models for studying large biological systems: when they can work and when they can't.
PLoS Comput Biol. 2009 May;5(5):e1000380. doi: 10.1371/journal.pcbi.1000380. Epub 2009 May 8.
8
Burst spiking of a single cortical neuron modifies global brain state.
Science. 2009 May 1;324(5927):643-6. doi: 10.1126/science.1169957.
9
Prediction of spatiotemporal patterns of neural activity from pairwise correlations.
Phys Rev Lett. 2009 Apr 3;102(13):138101. doi: 10.1103/PhysRevLett.102.138101. Epub 2009 Apr 2.
10
The structure of large-scale synchronized firing in primate retina.
J Neurosci. 2009 Apr 15;29(15):5022-31. doi: 10.1523/JNEUROSCI.5187-08.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验