Ohiorhenuan Ifije E, Victor Jonathan D
Division of Systems Neurology and Neuroscience, Department of Neurology and Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
J Comput Neurosci. 2011 Feb;30(1):125-41. doi: 10.1007/s10827-010-0257-0. Epub 2010 Jul 16.
To understand the functional connectivity of neural networks, it is important to develop simple and incisive descriptors of multineuronal firing patterns. Analysis at the pairwise level has proven to be a powerful approach in the retina, but it may not suffice to understand complex cortical networks. Here we address the problem of describing interactions among triplets of neurons. We consider two approaches: an information-geometric measure (Amari 2001), which we call the "strain," and the Kullback-Leibler divergence. While both approaches can be used to assess whether firing patterns differ from those predicted by a pairwise maximum-entropy model, the strain provides additional information. Specifically, when the observed firing patterns differ from those predicted by a pairwise model, the strain indicates the nature of this difference--whether there is an excess or a deficit of synchrony--while the Kullback-Leibler divergence only indicates the magnitude of the difference. We show that the strain has technical advantages, including ease of calculation of confidence bounds and bias, and robustness to the kinds of spike-sorting errors associated with tetrode recordings. We demonstrate the biological importance of these points via an analysis of multineuronal firing patterns in primary visual cortex. There is a striking scale-dependent behavior of triplet firing patterns: deviations from the pairwise model are substantial when the neurons are within 300 microns of each other, and negligible when they are at a distance of >600 microns. The strain identifies a consistent pattern to these interactions: when triplet interactions are present, the strain is nearly always negative, indicating that there is less synchrony than would be expected from the pairwise interactions alone.
为了理解神经网络的功能连接性,开发简单而深刻的多神经元放电模式描述符非常重要。在视网膜中,成对水平的分析已被证明是一种强大的方法,但它可能不足以理解复杂的皮层网络。在这里,我们解决描述神经元三元组之间相互作用的问题。我们考虑两种方法:一种信息几何度量(Amari,2001年),我们称之为“应变”,以及库尔贝克-莱布勒散度。虽然这两种方法都可用于评估放电模式是否与成对最大熵模型预测的模式不同,但应变提供了额外信息。具体而言,当观察到的放电模式与成对模型预测的模式不同时,应变表明这种差异的性质——是同步过剩还是不足——而库尔贝克-莱布勒散度仅表明差异的大小。我们表明,应变具有技术优势,包括易于计算置信区间和偏差,以及对与四极管记录相关的各种尖峰分类误差具有鲁棒性。我们通过对初级视觉皮层中多神经元放电模式的分析证明了这些观点的生物学重要性。三元组放电模式存在显著的尺度依赖性行为:当神经元彼此距离在300微米以内时,与成对模型的偏差很大,而当它们距离大于600微米时,偏差可忽略不计。应变识别出这些相互作用的一致模式:当存在三元组相互作用时,应变几乎总是负的,表明同步性比仅由成对相互作用预期的要少。