Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, Canada.
Lab Chip. 2010 Sep 21;10(18):2341-9. doi: 10.1039/c004675b. Epub 2010 Jul 6.
Although pathologic changes to the structure and function of small blood vessels are hallmarks of various cardiovascular diseases, limitations of conventional investigation methods (i.e. pressure myography) have prohibited a comprehensive understanding of the underlying mechanisms. We developed a microfluidic device to facilitate assessment of resistance artery structure and function under physiological conditions (37 degrees C, 45 mmHg transmural pressure). The platform allows for on-chip fixation, long-term culture and fully automated acquisition of up to ten dose-response sequences of intact mouse mesenteric artery segments (diameter approximately 250 micrometres and length approximately 1.5 mm) in a well-defined microenvironment. Even abluminal application of phenylephrine or acetylcholine (homogeneous condition) yielded dose-response relationships virtually identical to conventional myography. Unilateral application of phenylephrine (heterogeneous condition) limited constriction to the drug-exposed side, suggesting a lack of circumferential communication. The microfluidic platform allows us to address new fundamental biological questions, replaces a manually demanding procedure with a scalable approach and may enable organ-based screens to be routinely performed during drug development.
虽然小血管的结构和功能的病理变化是各种心血管疾病的标志,但传统的研究方法(即压力肌动描记法)的局限性阻碍了对潜在机制的全面理解。我们开发了一种微流控装置,以促进在生理条件下(37°C,45mmHg 跨壁压)评估阻力血管的结构和功能。该平台允许在芯片上固定、长期培养,并全自动采集多达十个完整的小鼠肠系膜动脉段的剂量反应序列(直径约 250 微米,长度约 1.5 毫米),并在一个明确定义的微环境中进行。即使在无窗侧施加苯肾上腺素或乙酰胆碱(均匀条件),也能产生与传统肌动描记术几乎相同的剂量反应关系。苯肾上腺素的单侧应用(非均匀条件)将收缩限制在药物暴露侧,表明缺乏周向连通。微流控平台使我们能够解决新的基本生物学问题,用可扩展的方法取代了手动要求高的程序,并可能使器官为基础的筛选在药物开发过程中常规进行。