Institute of Theoretical Computer Science, ETH Zurich, Universitätstrasse 6, 8092 Zürich, Switzerland.
BMC Bioinformatics. 2010 Jul 7;11:372. doi: 10.1186/1471-2105-11-372.
BACKGROUND: Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. RESULTS: We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. CONCLUSIONS: We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance distributions. We provide generic procedures for inferring interaction strengths and quantifying their relative statistical significance from sets of discrete objects as provided by image analysis methods. Within our framework, an interaction potential can either refer to a phenomenological or a mechanistic model of a physico-chemical interaction process. This increased flexibility in designing and testing different hypothetical interaction models can be used to quantify the parameters of a specific interaction model or may catalyze the discovery of functional relations.
背景:亚细胞结构以直接和间接的多种方式相互作用,以完成细胞功能。虽然直接的分子相互作用主要依赖于空间接近度,但其他相互作用通常会导致相互作用结构之间产生空间相关性。这种相关性是基于显微镜的共定位分析的目标,它可以提供潜在相互作用的线索。共定位分析有两种互补的方法:强度相关方法利用模式发现,而基于对象的方法则强调检测能力。
结果:我们首先在空间点模式分析的背景下重新研究了经典的共定位度量。这使我们能够揭示该度量所固有的一系列隐含假设,并确定通常被忽略的潜在混杂因素。我们将基于对象的共定位分析推广到一个涉及空间点过程的统计框架中。在这个框架中,相互作用被理解为观察到的定位模式中的位置协同依赖性。该框架基于有效成对相互作用势的模型和不存在相互作用时预期模式的零假设的指定。因此,推断出的相互作用势反映了所有无法用零假设解释的显著影响。我们的模型使我们能够使用大量众所周知的统计方法来分析实验数据,这在合成数据和考虑病毒进入活细胞的案例研究中得到了证明。我们表明,经典的共定位度量通常无法充分利用我们数据中包含的信息。
结论:我们通过基于最近邻距离分布的空间统计框架来制定基于对象的相互作用分析问题,从而在亚细胞结构的共定位和空间相互作用之间建立了联系。我们提供了从图像分析方法提供的离散对象集中推断相互作用强度并量化其相对统计显著性的通用程序。在我们的框架内,相互作用势可以指的是物理化学相互作用过程的现象学或机械模型。这种设计和测试不同假设相互作用模型的灵活性增加,可以用于量化特定相互作用模型的参数,或者可以促进功能关系的发现。
BMC Bioinformatics. 2010-7-7
BMC Bioinformatics. 2013-12-3
BMC Bioinformatics. 2008-2-4
BMC Bioinformatics. 2020-2-5
Cytometry A. 2015-6
Methods Mol Biol. 2013
PLoS Comput Biol. 2025-8-21
J Struct Biol. 2005-8